scholarly journals Asymptotic properties of solutions of differential systems with deviating arguments

1990 ◽  
Vol 115 (2) ◽  
pp. 178-191
Author(s):  
Eva Špániková
2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Youliang Fu ◽  
Yazhou Tian ◽  
Cuimei Jiang ◽  
Tongxing Li

This paper is concerned with the asymptotic properties of solutions to a third-order nonlinear neutral delay differential equation with distributed deviating arguments. Several new theorems are obtained which ensure that every solution to this equation either is oscillatory or tends to zero. Two illustrative examples are included.


2006 ◽  
Vol 4 (1) ◽  
pp. 46-63 ◽  
Author(s):  
Ivan Mojsej ◽  
Ján Ohriska

AbstractThe aim of our paper is to study oscillatory and asymptotic properties of solutions of nonlinear differential equations of the third order with deviating argument. In particular, we prove a comparison theorem for properties A and B as well as a comparison result on property A between nonlinear equations with and without deviating arguments. Our assumptions on nonlinearity f are related to its behavior only in a neighbourhood of zero and/or of infinity.


Author(s):  
Ch. G. Philos ◽  
Y. G. Sficas ◽  
V. A. Staikos

AbstractThis paper deals with some asymptotic properties of nonoscillatory solutions of a class of n-th order (n < 1) differential equations with deviationg arguments involving the so called n-th order r-derivative of the unknown function x defined bywhere ri (i = 0,1…n) are positive continous functions on [t0, ∞). The fundamental purpose of this paper is to find for any integer m, 0 < m < n – 1, a necessary and sufficient condition (depending on m) in order that three exists at least one (nonoscillatory) solution x so that the exists in R – {0} The results obtained extend some recent ones due to Philos (1978a) and they prove, in a general setting, the validity of a conjecture made by Kusano and Onose (1975).


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2552
Author(s):  
Blanka Baculikova

In this paper, we study oscillation and asymptotic properties for half-linear second order differential equations with mixed argument of the form r(t)(y′(t))α′=p(t)yα(τ(t)). Such differential equation may possesses two types of nonoscillatory solutions either from the class N0 (positive decreasing solutions) or N2 (positive increasing solutions). We establish new criteria for N0=∅ and N2=∅ provided that delayed and advanced parts of deviating argument are large enough. As a consequence of these results, we provide new oscillatory criteria. The presented results essentially improve existing ones even for a linear case of considered equations.


Sign in / Sign up

Export Citation Format

Share Document