scholarly journals New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations

2021 ◽  
pp. 1-21
Author(s):  
Mimia Benhadri ◽  
Tomás Caraballo
1967 ◽  
Vol 10 (5) ◽  
pp. 681-688 ◽  
Author(s):  
B.S. Lalli

The purpose of this paper is to obtain a set of sufficient conditions for “global asymptotic stability” of the trivial solution x = 0 of the differential equation1.1using a Lyapunov function which is substantially different from similar functions used in [2], [3] and [4], for similar differential equations. The functions f1, f2 and f3 are real - valued and are smooth enough to ensure the existence of the solutions of (1.1) on [0, ∞). The dot indicates differentiation with respect to t. We are taking a and b to be some positive parameters.


1990 ◽  
Vol 33 (4) ◽  
pp. 442-451 ◽  
Author(s):  
G. Ladas ◽  
C. Qian

AbstractWe obtain sufficient conditions for the oscillation of all solutions of the linear delay differential equation with positive and negative coefficientswhereExtensions to neutral differential equations and some applications to the global asymptotic stability of the trivial solution are also given.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
R. Sakthivel ◽  
P. Revathi ◽  
N. I. Mahmudov

We study the existence and asymptotic stability inpth moment of a mild solution to a class of nonlinear fractional neutral stochastic differential equations with infinite delays in Hilbert spaces. A set of novel sufficient conditions are derived with the help of semigroup theory and fixed point technique for achieving the required result. The uniqueness of the solution of the considered problem is also studied under suitable conditions. Finally, an example is given to illustrate the obtained theory.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1095
Author(s):  
Clemente Cesarano ◽  
Osama Moaaz ◽  
Belgees Qaraad ◽  
Nawal A. Alshehri ◽  
Sayed K. Elagan ◽  
...  

Differential equations with delay arguments are one of the branches of functional differential equations which take into account the system’s past, allowing for more accurate and efficient future prediction. The symmetry of the equations in terms of positive and negative solutions plays a fundamental and important role in the study of oscillation. In this paper, we study the oscillatory behavior of a class of odd-order neutral delay differential equations. We establish new sufficient conditions for all solutions of such equations to be oscillatory. The obtained results improve, simplify and complement many existing results.


Author(s):  
Rachida Mezhoud ◽  
Khaled Saoudi ◽  
Abderrahmane Zaraï ◽  
Salem Abdelmalek

AbstractFractional calculus has been shown to improve the dynamics of differential system models and provide a better understanding of their dynamics. This paper considers the time–fractional version of the Degn–Harrison reaction–diffusion model. Sufficient conditions are established for the local and global asymptotic stability of the model by means of invariant rectangles, the fundamental stability theory of fractional systems, the linearization method, and the direct Lyapunov method. Numerical simulation results are used to illustrate the theoretical results.


1992 ◽  
Vol 15 (3) ◽  
pp. 509-515 ◽  
Author(s):  
B. S. Lalli ◽  
B. G. Zhang

An existence criterion for nonoscillatory solution for an odd order neutral differential equation is provided. Some sufficient conditions are also given for the oscillation of solutions of somenth order equations with nonlinearity in the neutral term.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


2018 ◽  
Vol 68 (6) ◽  
pp. 1385-1396 ◽  
Author(s):  
Arun Kumar Tripathy ◽  
Rashmi Rekha Mohanta

Abstract In this paper, several sufficient conditions for oscillation of all solutions of fourth order functional differential equations of neutral type of the form $$\begin{array}{} \displaystyle \bigl(r(t)(y(t)+p(t)y(t-\tau))''\bigr)''+q(t)G\bigl(y(t-\sigma)\bigr)=0 \end{array}$$ are studied under the assumption $$\begin{array}{} \displaystyle \int\limits^{\infty}_{0}\frac{t}{r(t)}{\rm d} t =\infty \end{array}$$


Sign in / Sign up

Export Citation Format

Share Document