scholarly journals Methanol and formaldehyde determination by colorimetry using alcohol oxidase.

1996 ◽  
Vol 45 (7) ◽  
pp. 677-682 ◽  
Author(s):  
Keiichi FUJIMORI ◽  
Masaru KITANO ◽  
Norimichi TAKENAKA ◽  
Hiroshi BANDOW ◽  
Yasuaki MAEDA
Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1379-1391
Author(s):  
Monique A Johnson ◽  
Hans R Waterham ◽  
Galyna P Ksheminska ◽  
Liubov R Fayura ◽  
Joan Lin Cereghino ◽  
...  

Abstract We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.


2002 ◽  
Vol 98-100 (1-9) ◽  
pp. 243-256 ◽  
Author(s):  
Yolanda Alvarado-Caudillo ◽  
José Carlos Bravo Torres ◽  
Vanesa Zazueta Novoa ◽  
Hortencia Silva Jiménez ◽  
J. Carlos Torres-Guzmán ◽  
...  

2001 ◽  
Vol 91 (2) ◽  
pp. 225-227 ◽  
Author(s):  
Tomoyuki Nakagawa ◽  
Yasuyoshi Sakai ◽  
Hiroyuki Mukaiyama ◽  
Tasuku Mizumura ◽  
Tatsuro Miyaji ◽  
...  

1985 ◽  
Vol 5 (5) ◽  
pp. 1111-1121
Author(s):  
S B Ellis ◽  
P F Brust ◽  
P J Koutz ◽  
A F Waters ◽  
M M Harpold ◽  
...  

The oxidation of methanol follows a well-defined pathway and is similar for several methylotrophic yeasts. The use of methanol as the sole carbon source for the growth of Pichia pastoris stimulates the expression of a family of genes. Three methanol-responsive genes have been isolated; cDNA copies have been made from mRNAs of these genes, and the protein products from in vitro translations have been examined. The identification of alcohol oxidase as one of the cloned, methanol-regulated genes has been made by enzymatic, immunological, and sequence analyses. Methanol-regulated expression of each of these three isolated genes can be demonstrated to occur at the level of transcription. Finally, DNA subfragments of two of the methanol-responsive genomic clones from P. pastoris have been isolated and tentatively identified as containing the control regions involved in methanol regulation.


2019 ◽  
Vol 9 (4) ◽  
pp. 720 ◽  
Author(s):  
Galina Gayda ◽  
Olha Demkiv ◽  
Nataliya Stasyuk ◽  
Roman Serkiz ◽  
Maksym Lootsik ◽  
...  

Novel nanomaterials, including metallic nanoparticles obtained via green synthesis (gNPs), have a great potential for application in biotechnology, industry and medicine. The special role of gNPs is related to antibacterial agents, fluorescent markers and carriers for drug delivery. However, application of gNPs for construction of amperometric biosensors (ABSs) is not well documented. The aim of the current research was to study potential advantages of using gNPs in biosensorics. The extracellular metabolites of the yeast Ogataea polymorpha were used as reducing agents for obtaining gNPs from the corresponding inorganic ions. Several gNPs were synthesized, characterized and tested as enzyme carriers on the surface of graphite electrodes (GEs). The most effective were Pd-based gNPs (gPdNPs), and these were studied further and applied for construction of laccase- and alcohol oxidase (AO)-based ABSs. AO/GE, AO-gPdNPs/GE, laccase/GE and laccase-gPdNPs/GE were obtained, and their analytical characteristics were studied. Both gPdNPs-modified ABSs were found to have broader linear ranges and higher storage stabilities than control electrodes, although they are less sensitive toward corresponding substrates. We thus conclude that gPdNPs may be promising for construction of ABSs for enzymes with very high affinities to their substrates.


Sign in / Sign up

Export Citation Format

Share Document