scholarly journals Effectiveness of indigenous fluorescent pseudomonads in suppressing Rhizoctonia solani root rot disease and promoting plant growth in chilli seedlings

Author(s):  
Chuen, N. L. ◽  
Muda, R.-H. ◽  
Ahmad, K.
2020 ◽  
Vol 8 (4) ◽  
pp. 496
Author(s):  
Dilfuza Egamberdieva ◽  
Vyacheslav Shurigin ◽  
Burak Alaylar ◽  
Hua Ma ◽  
Marina E. H. Müller ◽  
...  

The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant–microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54–75%, and shoot dry weight by 21–25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40–50% and 10–20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.


2014 ◽  
Vol 30 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Syed Ehteshamul-Haque ◽  
Abdul Ghaffar

Seed treatment of soybean with <i>Bndyrhizobium japonicum, Trichoderma harzianum, T. viride, T. hamatum, T. koningii</i> and <i>T. pseudokoningii</i> significantly controlled the infection of 30-day-old seedlingsby <i>Maerophomina phaseolina, Rhizoctonia solani</i> and <i>Fusarium</i> spp. In 60-day-old plants <i>Trichoderma</i> spp.. and <i>B. japonicum</i> inhibited the grouth of <i>R. solani</i> and <i>Fusarium</i> spp., whereas the use of <i>B. japonicum</i> (TAL-102) with <i>T. harzianum. T. viride, T. koningii</i> and <i>T. pseudokoningii</i> controlled the infection by <i>M. phaseolina. Greater grain yield was recorded when B. <i>japonium</i> (TAI-102) was used with <i>T. hamatum</i>.


Author(s):  
Bishnu Maya Bashyal ◽  
Bhupendra Singh Kharayat ◽  
Pooja Parmar ◽  
Ashish Kumar Gupta ◽  
S. C. Dubey ◽  
...  

Background: Mungbean (Vigna radiata L. Wilzeck) is one of the most important pulse crops and grown in almost all parts of the India. Web blight/wet root rot disease of mungbean is caused by Rhizoctonia solani Kühn. Crop environmental factors plays a vital role in the development of web blight disease caused by R. solani. An understanding of the role of environmental factors on the infection and survival of the pathogen is necessary to develop disease management practices. Methods: The effect of different temperatures (4oC, 20oC, 25oC, 30oC and 35oC) on mycelial growth of seven different R. solani isolates belonging to different anastomosis group were evaluated under in vitro conditions. Effect of different temperatures on the development of root rot/web blight disease of mungbean was also evaluated under phytotron conditions at various temperatures with constant relative humidity (85%) and illumination (alternate dark and light period of 12 h). Effect of temperatures on the expression of selected pathogenicity related genes was evaluated through real time PCR. Result: Maximum radial growth in R. solani isolates was observed at 25 and 30oC after 48 hrs of incubation. Maximum disease incidence was observed with R. solani isolate RUPU-18 (73.11%) followed by R-17 (68.75%), RDLM-1 (63.45%) at 25oC on mungbean genotype Pusa Vishal. Expression of genes like ABC transporter was observed only at 35oC, while other genes like 1, 3 glucan hydrolase expressed maximum at 25oC after 24, 48 and 72 hrs post inoculation. Present study suggested that the expression of pathogenicity related genes in mungbean-R. solani system is dependent on the temperature and time interval post pathogen inoculation.


1976 ◽  
Vol 56 (2) ◽  
pp. 97-103 ◽  
Author(s):  
SALIH M. DAMIRGI ◽  
F. D. COOK ◽  
G. R. WEBSTER

Attempts were made to evaluate the potential biological factor causing poor growth (stunting) of alfalfa (Medicago sativa L.) on some soils in Central Alberta. Paratylenchus projectus which associates with stunted alfalfa was extracted from an affected soil. Alfalfa seedlings grown in sterilized sand culture assemblies were inoculated with P. projectus alone and in combination with dilutions from sterilized and non-sterilized affected and normal soils. Other studies included the effects of various sterilized and non-sterilized soil dilutions from an affected soil on plant growth and incidence of alfalfa stunting symptoms. Results indicate that P. projectus is not the biological factor causing alfalfa stunting. Typical stunting symptoms were observed on plants receiving non-sterilized soil dilutions from an affected soil, and the consistency of development of irregular reddish-brown root lesions on stunted plant roots confirmed the presence of other biological factor(s) causing the disease. It was reasonably well established that the root rot disease was caused by a microorganism(s). Further studies regarding root lesioning, isolation and identification of the microorganisms are being carried on in this laboratory.


Sign in / Sign up

Export Citation Format

Share Document