Oxygen In-Situ Combustion for Oil Recovery: Combustion Tube Tests

1984 ◽  
Vol 36 (07) ◽  
pp. 1139-1144 ◽  
Author(s):  
James Gordon Hansel ◽  
Michael Arthur Benning ◽  
John Matthew Fernbacher
SPE Journal ◽  
2013 ◽  
Vol 18 (06) ◽  
pp. 1217-1228 ◽  
Author(s):  
Hascakir Berna ◽  
Cynthia M. Ross ◽  
Louis M. Castanier ◽  
Anthony R. Kovscek

Summary In-situ combustion (ISC) is a successful method with great potential for thermal enhanced oil recovery. Field applications of ISC are limited, however, because the process is complex and not well-understood. A significant open question for ISC is the formation of coke or "fuel" in correct quantities that is sufficiently reactive to sustain combustion. We study ISC from a laboratory perspective in 1 m long combustion tubes that allow the monitoring of the progress of the combustion front by use of X-ray computed tomography (CT) and temperature profiles. Two crude oils—12°API (986 kg/m3) and 9°API (1007 kg/m3)—are studied. Cross-sectional images of oil movement and banking in situ are obtained through the appropriate analysis of the spatially and temporally varying CT numbers. Combustion-tube runs are quenched before front breakthrough at the production end, thereby permitting a post-mortem analysis of combustion products and, in particular, the fuel (coke and coke-like residues) just downstream of the combustion front. Fuel is analyzed with both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XPS and SEM results are used to identify the shape, texture, and elemental composition of fuel in the X-ray CT images. The SEM and XPS results aid efforts to differentiate among combustion-tube results with significant and negligible amounts of clay minerals. Initial results indicate that clays increase the surface area of fuel deposits formed, and this aids combustion. In addition, comparisons are made of coke-like residues formed during experiments under an inert nitrogen atmosphere and from in-situ combustion. Study results contribute to an improved mechanistic understanding of ISC, fuel formation, and the role of mineral substrates in either aiding or impeding combustion. CT imaging permits inference of the width and movement of the fuel zone in situ.


2021 ◽  
pp. 1-13
Author(s):  
Melek Deniz Paker ◽  
Murat Cinar

Abstract A significant portion of world oil reserves reside in naturally fractured reservoirs and a considerable amount of these resources includes heavy oil and bitumen. Thermal enhanced oil recovery methods (EOR) are mostly applied in heavy oil reservoirs to improve oil recovery. In situ combustion (/SC) is one of the thermal EOR methods that could be applicable in a variety of reservoirs. Unlike steam, heat is generated in situ due to the injection of air or oxygen enriched air into a reservoir. Energy is provided by multi-step reactions between oxygen and the fuel at particular temperatures underground. This method upgrades the oil in situ while the heaviest fraction of the oil is burned during the process. The application of /SC in fractured reservoirs is challenging since the injected air would flow through the fracture and a small portion of oil in the/near fracture would react with the injected air. Only a few researchers have studied /SC in fractured or high permeability contrast systems experimentally. For in situ combustion to be applied in fractured systems in an efficient way, the underlying mechanism needs to be understood. In this study, the major focus is permeability variation that is the most prominent feature of fractured systems. The effect of orientation and width of the region with higher permeability on the sustainability of front propagation are studied. The contrast in permeability was experimentally simulated with sand of different particle size. These higher permeability regions are analogous to fractures within a naturally fractured rock. Several /SC tests with sand-pack were carried out to obtain a better understanding of the effect of horizontal vertical, and combined (both vertical and horizontal) orientation of the high permeability region with respect to airflow to investigate the conditions that are required for a self-sustained front propagation and to understand the fundamental behavior. Within the experimental conditions of the study, the test results showed that combustion front propagated faster in the higher permeability region. In addition, horizontal orientation almost had no effect on the sustainability of the front; however, it affected oxygen consumption, temperature, and velocity of the front. On the contrary, the vertical orientation of the higher permeability region had a profound effect on the sustainability of the combustion front. The combustion behavior was poorer for the tests with vertical orientation, yet the produced oil AP/ gravity was higher. Based on the experimental results a mechanism has been proposed to explain the behavior of combustion front in systems with high permeability contrast.


1981 ◽  
Vol 103 (4) ◽  
pp. 296-300
Author(s):  
S. M. Farouq Ali ◽  
J. Ferrer

Thermal recovery models for oil recovery consist of steam injection and in-situ combustion simulators. At the present time, steam injection simulators have been developed to a point where it is possible to reliably simulate portions of a fieldwide flood. Cyclic steam stimulation simulation still entails a number of questionable assumptions. Formation parting cannot be simulated in either case. In-situ combustion simulators lack the capability for front tracking. Even though the models are rather sophisticated, process mechanism description and input data are inadequate.


Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119216
Author(s):  
Seyedsaeed Mehrabi-Kalajahi ◽  
Mikhail A. Varfolomeev ◽  
Chengdong Yuan ◽  
Almaz L. Zinnatullin ◽  
Nikolay O. Rodionov ◽  
...  

1982 ◽  
Vol 22 (04) ◽  
pp. 493-502 ◽  
Author(s):  
Shapour Vossoughi ◽  
G. Paul Willhite ◽  
William P. Kritikos ◽  
Ibrahim M. Guvenir ◽  
Youssef El Shoubary

Abstract A fully automated in-situ combustion apparatus supported by a minicomputer was designed, constructed, and tested.Results obtained from four adiabatic dry combustion runs to investigate the effect on clay on crude oil combustion are reported. Sand mixtures of varying clay (kaolinite) content were saturated with crude oil and water. The fourth run was performed with amorphous silica powder in the sand mixture for comparison with clay results.We concluded that the large surface area of the clays was a major contributor to the fuel deposition process. However, different oxygen utilization efficiencies obtained from both types of sand mixtures indicated that mechanisms controlling the combustion reaction also depended on the composition of the porous matrix.A thermogravimetric analyzer (TGA) and a differential scanning calorimeter (DSC) were used to obtain kinetic data on the effects of kaolinite type clay on crude oil combustion. The addition of kaolinite clay or silica powder changed the shape of the crude oil TGA/DSC thermograms significantly, but sand had no effect. The major effect on DSC thermograms was a shifting of the large amount of heat produced from a higher to lower temperature range. Reduction of activation energy caused by the addition of kaolinite clay to the crude oil indicates both catalytic and surface area effects on combustion/cracking reactions. Introduction In-situ combustion is a thermal recovery process in which a portion of the crude oil is coked and burned in situ to recover the remaining oil. Design of the process involves experimental evaluation of process variables in laboratory experiments. Variables sought experimentally for the design of the process are usually fuel availability, air requirement, oxygen utilization efficiency, combustion peak temperature, combustion front velocity, effect of porous matrix, and kinetic parameters. Four methods have been used to obtain design data for in-situ combustion projects. These include (1) adiabatic in-situ combustion tube runs, (2) isothermal reactors, (3) flood pot tests, and (4) thermal analysis techniques.This paper describes an investigation of the effect of clay on in-situ combustion involving results from adiabatic combustion tube runs and thermal analysis methods. Part 1 describes the minicomputer-based insitu combustion system developed as part of the research program. Part 2 demonstrates application of the system to study the effect of clays on the in-situ combustion process. Combustion tube runs described in Part 2 are supplemented with thermal analysis methods to evaluate the effect of clay on in-situ combustion of a Kansas crude oil. Part 1-Development of an Automated In-Situ Combustion Tube Adiabatic tube runs have been the most commonly used approach for studying in-situ combustion. Since heat loss is small to nil in thick reservoirs, in-situ combustion is assumed to occur under adiabatic conditions. Adiabatic conditions in tube runs can be achieved either by insulating the tube or by reducing the temperature gradient between the sandpack and the environment surrounding the tube, or both. To attain adiabatic conditions in a partially or noninsulated tube, the temperature of the surroundings must be raised to that of the sandpack as the combustion front moves along the tube. Heater bands with proportional heat loads controlled by individual controllers are used. This requires a large number of controllers to control the temperature of the outside SPEJ P. 493^


1958 ◽  
Vol 10 (08) ◽  
pp. 13-17 ◽  
Author(s):  
Joseph N. Breston

2013 ◽  
Vol 16 (02) ◽  
pp. 172-182 ◽  
Author(s):  
Anthony Kovscek ◽  
Louis M. Castanier ◽  
Margot Gerritsen

Author(s):  
Tatiana Danelon De Assis ◽  
Mariane Dos Santos Bispo ◽  
Jessica Yvonne Santa Cruz Cárdenas ◽  
Giulia Carvalho Fritis ◽  
Angel Enrique Ramírez Gutiérrez ◽  
...  

This work presents a mathematical model describing the in-situ combustion process, which can be used in enhanced oil recovery. The hyperbolic part of the system was solved as a Riemann Problem. Necessary conditions for the existence of a traveling wave solution were verified. Furthermore, theoretical results are verified by using numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document