Laboratory Investigation of Low Salinity Waterflooding as Secondary Recovery Process: Effect of Wettability

Author(s):  
Adeel Ashraf ◽  
Nanji Hadia ◽  
Ole Torsaeter ◽  
Medad Twimukye Tweheyo
2020 ◽  
Vol 1 (2) ◽  
pp. 83
Author(s):  
Madi Abdullah Naser ◽  
Mohammed A Samba ◽  
Yiqiang Li

Laboratory tests and field applications shows that the salinity of water flooding could lead to significant reduction of residual oil saturation. There has been a growing interest with an increasing number of low-salinity water flooding studies. However, there are few quantitative studies on seawater composition change and it impact on increasing or improving oil recovery.  This study was conducted to investigate only two parameters of the seawater (Salinity and pH) to check their impact on oil recovery, and what is the optimum amount of salinity and ph that we can use to get the maximum oil recovery.  Several core flooding experiments were conducted using sandstone by inject seawater (high, low salinity and different pH). The results of this study has been shown that the oil recovery increases as the injected water salinity down to 6500 ppm and when the pH is around 7. This increase has been found to be supported by an increase in the permeability. We also noticed that the impact of ph on oil recovery is low when the pH is less than 7.


Author(s):  
M. Fouad Snosy ◽  
Mahmoud Abu El Ela ◽  
Ahmed El-Banbi ◽  
Helmy Sayyouh

AbstractWaterflooding has been practiced as a secondary recovery mechanism for many years with no regard to the composition of the injected brine. However, in the last decade, there has been an interest to understand the impact of the injected water composition and the low salinity waterflooding (LSWF) in oil recovery. LSWF has been investigated through various laboratory tests as a promising method for improving oil recovery in carbonate reservoirs. These experiments showed diverse mechanisms and results. In this study, a comprehensive review and analysis for results of more than 300 carbonate core flood experiments from published work were performed to investigate the effects of several parameters (injected water, oil, and rock properties along with the temperature) on oil recovery from carbonate rock. The analysis of the results showed that the water composition is the key parameter for successful waterflooding (WF) projects in the carbonate rocks. However, the salinity value of the injected water seems to have a negligible effect on oil recovery in both secondary and tertiary recovery stages. The study indicated that waterflooding with optimum water composition can improve oil recovery up to 30% of the original oil in place. In addition, the investigation showed that changing water salinity from LSWF to high salinity waterflooding can lead to an incremental oil recovery of up to 18% in the tertiary recovery stage. It was evident that applying the optimum composition in the secondary recovery stage is more effective than applying it in the tertiary recovery stage. Furthermore, the key parameters of the injected water and rock properties in secondary and tertiary recovery stages were studied using Fractional Factorial Design. The results revealed that the concentrations of Mg2+, Na+, K+, and Cl− in the injected water are the greatest influence parameters in the secondary recovery stage. However, the most dominant parameters in the tertiary recovery stage are the rock minerals and the concentration of K+, HCO3−, and SO42− in the injected water. In addition, it appears that the anhydrite percentage in the carbonate reservoirs may be an effective parameter in the tertiary WF. Also, there are no clear relations between the incremental oil recovery and the oil properties (total acid number or total base number) in both secondary and tertiary recovery stages. In addition, the results of the analysis showed an incremental oil recovery in all ranges of the studied flooding temperatures. The findings of this study can help to establish guidelines for screening and designing optimum salinity and composition for WF projects in carbonate reservoirs.


2011 ◽  
Author(s):  
Nanji Hadia ◽  
Havard Heldal Lehne ◽  
Kanwar G. Kumar ◽  
Kristoffer Andr Selboe ◽  
Feb Åge Stensen ◽  
...  

2017 ◽  
Vol 04 (03) ◽  
pp. 231-236 ◽  
Author(s):  
Barham S. Mahmood ◽  
Jagar Ali ◽  
Shirzad B. Nazhat ◽  
David Devlin

Sign in / Sign up

Export Citation Format

Share Document