Cumulative-Gas-Production Distribution on the Nikanassin Tight Gas Formation, Alberta and British Columbia, Canada

2011 ◽  
Vol 14 (03) ◽  
pp. 357-376 ◽  
Author(s):  
Nisael Solano ◽  
Liliana Zambrano ◽  
Roberto Aguilera

Summary 271 wells producing exclusively from the Nikanassin and equivalent formations in a very large area of more than 15,000 km2 in the Western Canada Sedimentary basin (WCSB), Alberta and British Columbia, Canada, have been evaluated with a view to determine the distribution of cumulative gas production and the possibilities of intensive infill drilling. The Upper Jurassic to Lower Cretaceous Nikanassin formation is generally characterized as a tight gas formation with low values of permeability (typically a fraction of millidarcy) and low porosities (usually less than 6%). It is likely that natural microfractures and slot pores dominate the productivity of the formation. The study area was divided into six smaller narrow areas (A through F) approximately parallel to the northwest/southeast-trending thrust belt of the Canadian Rocky Mountains. Area A is located to the west of the deformation edge, Area B is on the deformation edge, and Areas C through F are located to the east. Area C is the deepest and closest to the thrust belt, whereas Area F is the shallowest and farthest from the thrust belt. Cumulative production characteristics within each area were evaluated with a variability distribution model (VDM) developed recently for naturally fractured reservoirs. The evaluation of each one of the six areas (271 wells) resulted in coefficients of determination, R2 greater than 0.99 in all cases. The results indicate that the gas cumulative production distribution per well is more homogeneous along the deformation edge (Area B), in which 80% of the wells contribute approximately 50% of the cumulative production. The highest heterogeneity was found in Area F (the shallowest), with 80% of the wells contributing only 25% of the cumulative gas production. Areas A, C, D, and E have more or less the same distribution with 80% of the wells contributing between 35 and 45% of the cumulative gas production. In preliminary terms, there is an association between the cumulative-production distribution and lateral variations of borehole breakouts in the Nikanassin formation on a transect perpendicular to the deformation belt of the WCSB. Analysis of the distributions leads to the conclusion that the Nikanassin is a very heterogeneous formation and that there is significant potential for massive drilling to efficiently drain the formation. The possibilities of horizontal wells and multistage hydraulic-fracturing jobs are being investigated at this time.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Guangfeng Liu ◽  
Zhan Meng ◽  
Xuejiao Li ◽  
Daihong Gu ◽  
Daoyong Yang ◽  
...  

An integrated technique has been developed to experimentally and numerically evaluate water control and production increase in a tight gas formation with polymer. Experimentally, polymer has been appropriately selected and formulated to form a preferentially blocking membrane on the surface of pore and throat in core plugs collected from a tight gas reservoir. The unsteady-state experiments at high temperatures and confining pressures are then conducted to not only measure gas and water relative permeability but also to evaluate the performance of water control and gas production with and without such formulated polymers. The inlet and outlet pressure of the coreholder and flow rates of water and gas are measured throughout the displacement experiments. Theoretically, numerical simulations have been performed to history match the coreflooding experiments and then extended to evaluate well performance in gas fields with and without polymer treatment. Due to the good agreement between the simulated relative permeability and the measured values, the formulated polymer is found to simultaneously control water and increase gas production. Also, it is found from simulation that, after 10 years of production, gas wells after polymer injection show a higher recovery of 10.8% with a lower water-to-gas ratio and a higher formation pressure.


2020 ◽  
Author(s):  
Vladimir Astafyev ◽  
Mikhail Lushev ◽  
Alexey Mitin ◽  
Alexey Plotnikov ◽  
Evgenii Mironov ◽  
...  

Author(s):  
Majid Bizhani ◽  
Élizabeth Trudel ◽  
Ian Frigaard

Abstract British Columbia (BC) has a significant oil & gas industry, with approximately 25,000 wells drilled in the province since the early 1900s. In the past few decades, the industry has changed from a balanced oil & gas production to activities dominated by unconventional gas production which is recovered by hydraulic fracturing. Concurrently, since 2000 there has been a shift from isolated vertical wells to pad-drilled horizontal wells. The older well stock at end-of-life combines with horizontal production wells and fractured reservoirs, the consequence of which is a growing wave of abandonment in BC, building over the next decade. This paper reviews the existing data on BC wells, as it is relevant to well abandonment operations. This includes the well architectures, trajectories, depths, testing procedures, etc.


2015 ◽  
Author(s):  
Al Ameri F. ◽  
Al Awadhi F. ◽  
Abbott J. ◽  
Akbari A. ◽  
Daniels J.L.

Sign in / Sign up

Export Citation Format

Share Document