Experimental and Numerical Evaluation of Water Control and Production Increase in a Tight Gas Formation With Polymer

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Guangfeng Liu ◽  
Zhan Meng ◽  
Xuejiao Li ◽  
Daihong Gu ◽  
Daoyong Yang ◽  
...  

An integrated technique has been developed to experimentally and numerically evaluate water control and production increase in a tight gas formation with polymer. Experimentally, polymer has been appropriately selected and formulated to form a preferentially blocking membrane on the surface of pore and throat in core plugs collected from a tight gas reservoir. The unsteady-state experiments at high temperatures and confining pressures are then conducted to not only measure gas and water relative permeability but also to evaluate the performance of water control and gas production with and without such formulated polymers. The inlet and outlet pressure of the coreholder and flow rates of water and gas are measured throughout the displacement experiments. Theoretically, numerical simulations have been performed to history match the coreflooding experiments and then extended to evaluate well performance in gas fields with and without polymer treatment. Due to the good agreement between the simulated relative permeability and the measured values, the formulated polymer is found to simultaneously control water and increase gas production. Also, it is found from simulation that, after 10 years of production, gas wells after polymer injection show a higher recovery of 10.8% with a lower water-to-gas ratio and a higher formation pressure.

2011 ◽  
Vol 14 (03) ◽  
pp. 357-376 ◽  
Author(s):  
Nisael Solano ◽  
Liliana Zambrano ◽  
Roberto Aguilera

Summary 271 wells producing exclusively from the Nikanassin and equivalent formations in a very large area of more than 15,000 km2 in the Western Canada Sedimentary basin (WCSB), Alberta and British Columbia, Canada, have been evaluated with a view to determine the distribution of cumulative gas production and the possibilities of intensive infill drilling. The Upper Jurassic to Lower Cretaceous Nikanassin formation is generally characterized as a tight gas formation with low values of permeability (typically a fraction of millidarcy) and low porosities (usually less than 6%). It is likely that natural microfractures and slot pores dominate the productivity of the formation. The study area was divided into six smaller narrow areas (A through F) approximately parallel to the northwest/southeast-trending thrust belt of the Canadian Rocky Mountains. Area A is located to the west of the deformation edge, Area B is on the deformation edge, and Areas C through F are located to the east. Area C is the deepest and closest to the thrust belt, whereas Area F is the shallowest and farthest from the thrust belt. Cumulative production characteristics within each area were evaluated with a variability distribution model (VDM) developed recently for naturally fractured reservoirs. The evaluation of each one of the six areas (271 wells) resulted in coefficients of determination, R2 greater than 0.99 in all cases. The results indicate that the gas cumulative production distribution per well is more homogeneous along the deformation edge (Area B), in which 80% of the wells contribute approximately 50% of the cumulative production. The highest heterogeneity was found in Area F (the shallowest), with 80% of the wells contributing only 25% of the cumulative gas production. Areas A, C, D, and E have more or less the same distribution with 80% of the wells contributing between 35 and 45% of the cumulative gas production. In preliminary terms, there is an association between the cumulative-production distribution and lateral variations of borehole breakouts in the Nikanassin formation on a transect perpendicular to the deformation belt of the WCSB. Analysis of the distributions leads to the conclusion that the Nikanassin is a very heterogeneous formation and that there is significant potential for massive drilling to efficiently drain the formation. The possibilities of horizontal wells and multistage hydraulic-fracturing jobs are being investigated at this time.


SPE Journal ◽  
2016 ◽  
Vol 22 (03) ◽  
pp. 924-939 ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Shuang Li ◽  
Yao Huang ◽  
Jiazheng Qin ◽  
...  

Summary The increasing activities in tight reservoir exploitation through fractured wells have attracted interests of pressure-transient analysis (PTA) for well-performance evaluation. The production rates of different fractures were assumed to be equal in previous models. However, different fractures have unequal contributions to the total-gas-production rate because of the differences of fracture scale (e.g., half-length, height), heterogeneity of gas saturation, formation damage, and fracture closure. This paper considers the effect of unequal gas-production rate of each fracture (UGPREF) on pressure-transient behaviors, and develops a semianalytical methodology to diagnose the specific locations of underperforming fractures through PTA by use of bottomhole-pressure (BHP) data. First, new semianalytical solutions of a multifractured horizontal well (MFHW) in a tight gas reservoir are derived on the basis of the Green function (Gringarten and Ramey 1973) and Newman product method (Newman 1936). Second, the model is validated by comparison with the numerical model in KAPPA Ecrin (Saphir) software (Essca 2011). Third, type curves are developed, and sensitivity analysis is further investigated. Results show that there exist clear distinctions among these type curves between equal gas-production rate of each fracture (EGPREF) and UGPREF. The early radial flow is distinguishable and behaves as a horizontal line with the value of 0.5/N* (N* = N for EGPREF, N*≠N for UGPREF) in the pseudopressure-derivative curves when the interferences between fractures do not overlap this period. If the early-radial flow was mistakenly regarded as pseudoradial flow, the interpreted permeability would be N* times smaller than the accurate result. Furthermore, the methodology is applied to a field case of the Daniudi tight gas reservoir in the Ordos Basin, which illustrates its physical consistency and practicability to diagnose the specific locations of underperforming hydraulic fractures through pressure-history matching. It also provides feasible references for reservoir engineers in well-performance evaluation and field strategy (e.g., refracturing, acidizing, or other stimulation treatments) to enhance hydrocarbon production.


2021 ◽  
pp. 1-18
Author(s):  
Yunzhao Zhang ◽  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Dongsheng Sun ◽  
Shuangquan Chen ◽  
...  

Abstract The Upper Triassic Xujiahe Formation is a typical tight gas reservoir in which natural fractures determine the migration, accumulation and production capacity of tight gas. In this study, we focused on the influences of natural fractures on the tight gas migration and production. We clarified characteristics and attributes (i.e. dips, apertures, filling degree and cross-cutting relationships) of the fractures based on image logging interpretations and core descriptions. Previous studies of electron spin resonance, carbon and oxygen isotopes, homogenization temperature of fluid inclusions analysis and basin simulation were considered. This study also analysed the fracture sequences, source of fracture fillings, diagenetic sequences and tight gas enrichment stages. We obtained insight into the relationship between fracture evolution and hydrocarbon charging, particularly the effect of the apertures and intensity of natural fractures on tight gas production. We reveal that the bedding fractures are short horizontal migration channels of tight gas. The tectonic fractures with middle, high and nearly vertical angles are beneficial to tight gas vertical migration. The apertures of fractures are controlled by the direction of maximum principal stress and fracture angle. The initial gas production of the vertical wells presents a positive correlation with the fracture abundance, and the intensity and aperture of fractures are the fundamental factors that determine the tight gas production. With these findings, this study is expected to guide the future exploration and development of tight gas with similar geological backgrounds.


2020 ◽  
Author(s):  
Vladimir Astafyev ◽  
Mikhail Lushev ◽  
Alexey Mitin ◽  
Alexey Plotnikov ◽  
Evgenii Mironov ◽  
...  

SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 981-991 ◽  
Author(s):  
Duc H. Le ◽  
Hai N. Hoang ◽  
Jagannathan Mahadevan

Summary Hydraulic-fracturing operations carried out by injecting large volumes of water cause invasion of the injected water into the formation and create a water block. The flow of gas toward the wellbore/fracture during production will result in the removal of the water block through viscous displacement, as well as evaporation, that occurs because of gas expansion over a long period of time. However, some observations from the field show that the productivity of hydraulically fractured tight gas wells improves after a period of shut-in, leading to a speculation as to whether capillary suction is responsible for the cleanup of water block that eventually leads to productivity improvement. In this work, we use laboratory-scale experiments and modeling to find that capillary-driven transport is an important mechanism that helps redistribute water within the tight gas rock sample. Without capillarity, the model underpredicts the effective gas relative permeability recovery in the laboratory sample. We also find, using simulations, that capillary transport has the effect of enhancing the overall evaporation rate of water from the rock core. The model for calculating saturation changes and the effective gas relative permeability is complete with regard to all the mechanisms, such as displacement and evaporation. This is unlike previous studies, which did not include one or the other. Field-scale-simulation study of gas flowback using the new integrated model shows that the effective gas relative permeability of the invaded zone is significantly affected by capillary suction. In the absence of capillary suction, displacement and evaporation proceed as usual, but the invaded-zone water saturation does not dissipate quickly enough. The fracture-face skin, which is a function of the effective gas relative permeability, decreases faster as the invaded zone water is redistributed because of capillary suction. The simulations show that the evaporation of water from the invaded zone is very slow because of the low gas-flow rates in the tight rock matrix. In comparison to evaporative removal of water from the invaded zone, capillary-suction removal is significantly higher and faster. A sensitivity study on fracture-face skin shows that capillary suction has a significant effect on the cleanup at low drawdowns and smaller invasion depths. At complete shut-in conditions, the invaded-zone saturation continues to dissipate because of capillary suction. This confirms the general observation and anecdotal evidence that tight-sandstone wells produce at greater gas-flow rates after a period of shut-in. The methods described in this study can be adapted to perhaps determine the duration of such shut-in periods. Additionally, the models can be used to rigorously predict gas-production rates from a fractured well, including capillary effects, without resorting to averaging concepts such as fracture-face skin.


2014 ◽  
Vol 17 (02) ◽  
pp. 209-219 ◽  
Author(s):  
H.. Luo ◽  
G.F.. F. Mahiya ◽  
S.. Pannett ◽  
P.. Benham

Summary The evaluation of expected ultimate recovery (EUR) for tight gas wells has generally relied upon the Arps equation for decline-curve analysis (DCA) as a popular approach. However, it is typical in tight gas reservoirs to have limited production history that has yet to reach boundary-dominated flow because of the low permeability of such systems. Commingled production makes the situation even more complicated with multiboundary behavior. When suitable analogs are not available, rate-transient analysis (RTA) can play an important role to justify DCA assumptions for production forecasting. The Deep-basin East field has been developed with hydraulically fractured vertical wells through commingled production from multiple formations since 2002. To evaluate potential of this field, DCA type curves for various areas were established according to well performance and geological trending. Multiple-segment DCA methodology demonstrated reasonable forecasts, in which one Arps equation is used to describe the rapidly decreasing transient period in early time and another equation is used for boundary-dominated flow. However, a limitation of this approach is the uncertainty of the forecast in the absence of extended production data because the EUR can be sensitive to adjustments in some assumed DCA parameters of the second segment. In this paper, we used RTA to assess reservoir and fracture properties in multiple layers and built RTA-type well models around which uncertainty analyses were performed. The distributions of the model properties were then used in Monte Carlo analysis to forecast production and define uncertainty ranges for EUR and DCA parameters. The resulting forecasts and EUR distribution from RTA modeling generally support the DCA assumptions used for the type curves for corresponding areas of the field. The study also showed how the contribution from the various commingled layers changes with time. The proposed workflow provides a fit-for-purpose way to quantify uncertainties in tight gas production forecasting, especially for cases when production history is limited and field-level numerical simulation is not practicable.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012049
Author(s):  
Yan-qing Bian ◽  
Pu-cheng Wu ◽  
Jing Hao ◽  
Quan Shi ◽  
Guo-wei Qin

Abstract Based on the previous research on the rheological properties of nanofluids by many scholars at home and abroad, to solve the problem that the viscosity of conventional polymer water control agents is large and cannot meet the demand for increasing production capacity in the process of tight gas reservoir exploitation, this paper takes self-made nanofluids as the research object, tests the rheological properties of self-made nanofluids by rheological experiment, and systematically studies the effects of concentration, temperature and shear action on the viscosity of nanofluids, and the dynamic viscoelasticity and thixotropy of nanofluids were discussed. The results show that the rheological type of nanofluid belongs to power-law fluid, but it is related to the shear rate. The viscosity of nanofluids increases with the increase of concentration; when the temperature increases, the viscosity of nanofluids decreases and the fluidity increases; under the shear action, the viscosity of nanofluid changes very little and has good shear resistance; the dynamic viscoelastic test shows that the storage modulus G´ of the nanofluid is larger than the loss modulus G”, showing elastic characteristics; the thixotropy test shows that when the shear rate is accelerated, the viscosity decreases with time, and when the shear rate is slowed down, the viscosity recovers rapidly with time, which has good thixotropy. The research results provide an important theoretical basis for further research on the application of nanomaterials in tight oil and gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document