Mapping of Hydraulic Fractures under Triaxial Stress Conditions in Laboratory Experiments using Acoustic Emissions

Author(s):  
Akash Damani ◽  
Abhishek Sharma ◽  
Carl H. Sondergeld ◽  
Chandra Shekhar Rai
2011 ◽  
Vol 51 (1) ◽  
pp. 567
Author(s):  
Ahmadreza Younessi ◽  
Vamegh Rasouli

Sand production prediction is becoming a regular study in reservoirs with weak or unconsolidated sands. Three main approaches for sanding prediction are analytical, numerical and experimental methods. Laboratory experiments have proven to provide more realistic results, with these being used to understand sanding mechanisms and validate analytical and numerical methods. A large number of experimental studies have been carried out by researchers worldwide—most of which have been performed on cylindrical-shape samples under uniaxial (i.e. σ1 ≠ 0, σ2 = σ3 = 0) or triaxial (i.e. σ1 ≠ 0, σ2 = σ3 ≠ 0) stress conditions. In general, a sanding experiment under true-triaxial stresses (i.e. σ1 ≠ σ2 ≠ σ3 ≠ 0) is more realistic in simulating downhole conditions. This stress condition can be simulated in the laboratory on a cubic sample. The first part of this paper provides a comprehensive but brief literature review on past sanding laboratory experiments. This will be followed by the introducition of a unique true-triaxial stress cell (TTSC) which was modified and used for sanding simulations in the laboratory. The applied modifications will be illustrated and the test procedure described. The sample preparation for testing synthetic samples will be explained and some preliminary results obtained will be presented.


1973 ◽  
Vol 12 (64) ◽  
pp. 144-146 ◽  
Author(s):  
W. F. St. Lawrence ◽  
T. E. Lang ◽  
R.L. Brown ◽  
C. C. Bradley

AbstractAcoustic emissions in the audio spectrum are reported from observations of laboratory experiments conducted on snow samples in uniaxial compression. A number of tests show the pattern of acoustic emissions to be a function of the rate of deformation. Over the frequency range 20 to 7 000 Hz acoustic emissions are associated with rates of deformation corresponding to brittle fracture of the snow sample. Though probably present, no acoustic emissions were detected from samples deforming plastically.


Sign in / Sign up

Export Citation Format

Share Document