scholarly journals Acoustic Emission in Snow at Constant Rates of Deformation

1973 ◽  
Vol 12 (64) ◽  
pp. 144-146 ◽  
Author(s):  
W. F. St. Lawrence ◽  
T. E. Lang ◽  
R.L. Brown ◽  
C. C. Bradley

AbstractAcoustic emissions in the audio spectrum are reported from observations of laboratory experiments conducted on snow samples in uniaxial compression. A number of tests show the pattern of acoustic emissions to be a function of the rate of deformation. Over the frequency range 20 to 7 000 Hz acoustic emissions are associated with rates of deformation corresponding to brittle fracture of the snow sample. Though probably present, no acoustic emissions were detected from samples deforming plastically.

1973 ◽  
Vol 12 (64) ◽  
pp. 144-146 ◽  
Author(s):  
W. F. St. Lawrence ◽  
T. E. Lang ◽  
R.L. Brown ◽  
C. C. Bradley

Abstract Acoustic emissions in the audio spectrum are reported from observations of laboratory experiments conducted on snow samples in uniaxial compression. A number of tests show the pattern of acoustic emissions to be a function of the rate of deformation. Over the frequency range 20 to 7 000 Hz acoustic emissions are associated with rates of deformation corresponding to brittle fracture of the snow sample. Though probably present, no acoustic emissions were detected from samples deforming plastically.


Author(s):  
Benjamin Pruden ◽  
Ozan Akkus

Stress fractures occur in bones of athletes and soldiers due to the accumulation of microcracks [1]. Detection of precursor acoustic emissions (i.e. ultrasonic stress waves) resulting from microcrack activity may help predict failure onset before continuous physiological activity results in full-blown fracture. An acoustic emission wave generated from a microcrack in bone will be diminished by dispersion, mode separation, reflection, and viscous losses induced by the biological tissues (skin, muscle, fat) between the source and the transducer. While others have recorded waves emanating from unknown loci in human knee in vivo using acoustic emission method [2], there is no means to appreciate how far these waves can travel in the body. Several studies have characterized the ultrasound attenuation in bone [3] and muscle analog homogenates [4] in the frequency range above 300 kHz. On the other hand, acoustic emissions are prominent in the range of 20 kHz to 300 kHz. The current study focused on identifying the attenuation of acoustic emission waves in bone and muscle tissues in a frequency range which is more relevant to acoustic emissions. This information is critical for predicting whether an emission of certain magnitude at the source can reach surface mounted sensors without being totally attenuated.


1979 ◽  
Vol 46 (1) ◽  
pp. 107-112 ◽  
Author(s):  
J. D. Achenbach ◽  
J. G. Harris

Acoustic emissions produced by elementary processes of deformation and fracture at a crack edge are investigated on the basis of elastodynamic ray theory. To obtain a two-dimensional canonical solution we analyze wavefront motions generated by an arbitrary distribution of climbing edge dislocations emanating from the tip of a semi-infinite crack in an unbounded linearly elastic solid. These wavefront results are expressed in terms of emission coefficients which govern the variation with angle, and phase functions which govern the intensity of the wavefront signals. Explicit expressions for the emission coefficients are presented. The coefficients have been plotted versus the angle of observation, for various values of the crack propagation speed. The phase functions are in the form of integrals over the emanating dislocation distributions. Specific dislocation distributions correspond to brittle fracture and plastic yielding at the crack tip, respectively. Acoustic emission is most intense for brittle fracture, when the particle velocities experience wavefront jumps which are proportional to the stress-intensity factors prior to fracture. An appropriate adjustment of the canonical solution accounts for curvature of a crack edge. Such effects as focussing, finite duration of the propagation event, and finite dimensions of the crack are briefly discussed. As a specific example, the first signals generated by brittle Mode I propagation of an elliptical crack are calculated.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Zhongliang Feng ◽  
Xin Chen ◽  
Yu Fu ◽  
Shaoshuai Qing ◽  
Tongguan Xie

The joint arrangement in rock masses is the critical factor controlling the stability of rock structures in underground geotechnical engineering. In this study, the influence of the joint inclination angle on the mechanical behavior of jointed rock masses under uniaxial compression was investigated. Physical model laboratory experiments were conducted on jointed specimens with a single pre-existing flaw inclined at 0°, 30°, 45°, 60°, and 90° and on intact specimens. The acoustic emission (AE) signals were monitored during the loading process, which revealed that there is a correlation between the AE characteristics and the failure modes of the jointed specimens with different inclination angles. In addition, particle flow code (PFC) modeling was carried out to reproduce the phenomena observed in the physical experiments. According to the numerical results, the AE phenomenon was basically the same as that observed in the physical experiments. The response of the pre-existing joint mainly involved three stages: (I) the closing of the joint; (II) the strength mobilization of the joint; and (III) the reopening of the joint. Moreover, the response of the pre-existing joint was closely related to the joint’s inclination. As the joint inclination angle increased, the strength mobilization stage of the joint gradually shifted from the pre-peak stage of the stress–strain curve to the post-peak stage. In addition, the instantaneous drop in the average joint system aperture (aave) in the specimens with medium and high inclination angles corresponded to a rapid increase in the form of the pulse of the AE activity during the strength mobilization stage.


Author(s):  
A. Albers ◽  
M. Dickerhof

The application of Acoustic Emission technology for monitoring rolling element or hydrodynamic plain bearings has been addressed by several authors in former times. Most of these investigations took place under idealized conditions, to allow the concentration on one single source of emission, typically recorded by means of a piezoelectric sensor. This can be achieved by either eliminating other sources in advance or taking measures to shield them out (e. g. by placing the acoustic emission sensor very close to the source of interest), so that in consequence only one source of structure-born sound is present in the signal. With a practical orientation this is often not possible. In point of fact, a multitude of potential sources of emission can be worth considering, unfortunately superimposing one another. The investigations reported in this paper are therefore focused on the simultaneous monitoring of both bearing types mentioned above. Only one piezoelectric acoustic emission sensor is utilized, which is placed rather far away from the monitored bearings. By derivation of characteristic values from the sensor signal, different simulated defects can be detected reliably: seeded defects in the inner and outer race of rolling element bearings as well as the occurrence of mixed friction in the sliding surface bearing due to interrupted lubricant inflow.


Author(s):  
J. Saliba ◽  
A. Loukili ◽  
J.P. Regoin ◽  
D. Grégoire ◽  
L. Verdon ◽  
...  

The fracture process zone (FPZ) was investigated on unnotched and notched beams with different notch depths. Three point bending tests were realized on plain concrete under crack mouth opening displacement (CMOD) control. Crack growth was monitored by applying the acoustic emission (AE) technique. In order to improve our understanding of the FPZ, the width and length of the FPZ were followed based on the AE source locations maps and several AE parameters were studied during the entire loading process. The bvalue analysis, defined as the log-linear slope of the frequency-magnitude distribution of acoustic emissions, was also carried out to describe quantitatively the influence of the relative notch depth on the fracture process. The results show that the number of AE hits increased with the decrease of the relative notch depth and an important AE energy dissipation was observed at the crack initiation in unnotched beams. In addition, the relative notch depth influenced the AE characteristics, the process of crack propagation, and the brittleness of concrete.


Sign in / Sign up

Export Citation Format

Share Document