Value of Well Test in the determination and characterization of Natural Fractured Reservoir Properties in Large Onshore Abu Dhabi Carbonate Field

2012 ◽  
Author(s):  
Angelo Farcasanu ◽  
Cristian Ancuta ◽  
Abdul Samad ◽  
Arun T.A. Kumar ◽  
Riadh Bejaoui ◽  
...  
2021 ◽  
Vol 73 (08) ◽  
pp. 46-47
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202683, “Marrying the Static and Dynamic Worlds: Enhancing Saturation and Permeability Interpretation Using a Combination of Multifrequency Dielectric, Nuclear Magnetic Resonance, and Wireline Formation Testers,” by Hassan Mostafa, Ghassan Al-Jefri, SPE, and Tania Felix Menchaca, SPE, ADNOC, et al., prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Accurate water saturation evaluation and permeability profiling are crucial factors in determining volumetrics and productivity of multiple, stacked carbonate reservoirs offshore Abu Dhabi and derisking reservoir management. The case study presented in the complete paper illustrates how the integration of static measurements, such as dielectric dispersion and nuclear magnetic resonance (NMR) with dynamic measurements improves understanding of reservoir properties and supports more-accurate reservoir evaluation. Sampling and downhole fluid analysis (DFA) performed by wireline formation tester (WFT) identifies the fluid and rock properties in various flow units. Field Background and Challenges Optimal field development requires accurate estimations of water saturation and permeability. In this greenfield, the hydrocarbon is generally oil (medium to light) with very low asphaltene content. Overall, the reservoir quality is controlled by a combination of depositional environment, sequence stratigraphy, and diagenesis. Some reservoirs have good porosity, but reconciliation of log-based water saturation results with well-test results has been an issue. The objective in this case study was to drill a pilot hole for data gathering in a poorly characterized field location. Phase I included drilling a hole with a 55° deviation to cover all reservoirs for data gathering only, with the openhole reservoir section then being plugged and abandoned. Phase II of the plan was to sidetrack and complete the well as dual water-injector boreholes. In the reservoir section of the pilot borehole, a variety of logs was acquired for evaluation, including both logging-while-drilling and wireline measurements. While drilling, triple- combination data were acquired, consisting of gamma ray, resistivity, and nuclear logs (density neutron) along with resistivity images. The wireline-logging program was carried out in two stages to avoid differential sticking. In the first stage, the WFT was used to acquire 10 pressure points, seven points in the first reservoir and three points in the second. Two DFA stations were also recorded in Zone 1 to confirm whether the oil/water contact was deeper than expected. Logging was conducted using a high-tension wireline cable, which facilitates quicker accessibility to the openhole sections. In the second stage, multiple wireline runs were performed for the formation evaluation of the complete section, followed by the WFT pressure and fluid-sampling run on the drillpipe conveyance. Another critical challenge was to obtain accurate water saturations in the heterogeneous, minor, thin reservoirs, which are bounded by dense layers above and below and cause shoulder-bed effects. The third challenge in this well was to obtain an accurate, continuous, and representative permeability profile for the multiple reservoirs. WFT mini-drillstem test (DST) stations along with NMR logs were used to address this important requirement.


GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 47-86 ◽  
Author(s):  
Jürgen Grötsch ◽  
Omar Suwaina ◽  
Ghiath Ajlani ◽  
Ahmed Taher ◽  
Reyad El-Khassawneh ◽  
...  

ABSTRACT A 3-D geological model of the Kimmeridgian-Tithonian Manifa, Hith, Arab, and Upper Diyab formations in the area of the onshore Central Abu Dhabi Ridge was based on a newly established sequence stratigraphic, sedimentologic, and diagenetic model. It was part of an inter-disciplinary study of the large sour-gas reserves in Abu Dhabi that are mainly hosted by the Arab Formation. The model was used for dynamic evaluations and recommendations for further appraisal and development planning in the studied field. Fourth-order aggradational and progradational cycles are composed of small-scale fifth-order shallowing-upward cycles, mostly capped by anhydrite within the Arab-ABC. The study area is characterized by a shoreline progradation of the Arab Formation toward the east-northeast marked by high-energy oolitic/bioclastic grainstones of the Upper Arab-D and the Asab Oolite. The Arab-ABC, Hith, and Manifa pinch out toward the northeast. The strongly bioturbated Lower Arab-D is an intrashelf basinal carbonate ramp deposit, largely time-equivalent to the Arab-ABC. The deposition of the Manifa Formation over the Arab Formation was a major back-stepping event of the shallow-water platform before the onset of renewed progradation in the Early Cretaceous. Well productivity in the Arab-ABC is controlled mainly by thin, permeable dolomitic streaks in the fifth-order cycles at the base of the fourth-order cycles. This has major implications for reservoir management, well completion and stimulation, and development planning. Good reservoir properties have been preserved in the early diagenetic dolomitic streaks. In contrast, the reservoir properties of the Upper Arab-D oolitic/bioclastic grainstones deteriorate with depth due to burial diagenesis. A rock-type scheme was established because complex diagenetic overprinting prevented the depositional facies from being directly related to petrophysical properties. Special core analysis and the attribution of saturation functions to static and dynamic models were made on a cell-by-cell basis using the scheme and honoring the 3-D depositional facies and property model. The results demonstrated the importance of integrating sedimentological analysis and diagenesis with rock typing and static and dynamic modeling so as to enhance the predictive capabilities of subsurface models.


2005 ◽  
Vol 8 (04) ◽  
pp. 276-290 ◽  
Author(s):  
Paul F. Worthington ◽  
Luca Cosentino

Summary There have been many different approaches to quantifying cutoffs, with no single method emerging as the definitive basis for delineating net pay. Yet each of these approaches yields a different reservoir model, so it is imperative that cutoffs be fit for purpose (i.e., they are compatible with the reservoir mechanism and with a systematic methodology for the evaluation of hydrocarbons in place and the estimation of ultimate hydrocarbon recovery).These different requirements are accommodated by basing the quantification of cutoffs on reservoir-specific criteria that govern the storage and flow of hydrocarbons. In so doing, particular attention is paid to the relationships between the identification of cutoffs and key elements of the contemporary systemic practice of integrated reservoir studies. The outcome is a structured approach to the use of cutoffs in the estimation of ultimate hydrocarbon recovery. The principal benefits of a properly conditioned set of petrophysical cutoffs are a more exact characterization of the reservoir with a better synergy between the static and dynamic reservoir models, so that an energy company can more fully realize the asset value. Introduction In a literal sense, cutoffs are simply limiting values. In the context of integrated reservoir studies, they become limiting values of formation parameters. Their purpose is to eliminate those rock volumes that do not contribute significantly to the reservoir evaluation product. Typically, they have been specified in terms of the physical character of a reservoir. If used properly, cutoffs allow the best possible description and characterization of a reservoir as a basis for simulation. Yet, although physical cutoffs have been used for more than 50 years, there is still no rationalized procedure for identifying and applying them. The situation is compounded by the diverse approaches to reservoir evaluation that have been taken over that period, so that even the role of cutoffs has been unclear. These matters assume an even greater poignancy in contemporary integrated reservoir studies, which are systemic rather than parallel or sequential in nature, so that all components of the evaluation process are interlinked and, therefore, the execution of anyone of these tasks has ramifications for the others (Fig. 1). A particular aspect of the systemic approach is the provision for iteration as the reservoir knowledge-base advances. For example, simulation may be used in development studies to identify the most appropriate reservoir-depletion mechanism, but, once the development plan has been formulated, the dynamic model is retuned and progressively updated as development gets under way. The principal use of cutoffs is to delineate net pay, which can be described broadly as the summation of those depth intervals through which hydrocarbons are (economically) producible. In the context of integrated reservoir studies, net pay has an important role to play both directly and through a net-to-gross pay ratio. Net pay demarcates those intervals around a well that are the focus of the reservoir study. It defines an effective thickness that is pertinent to the identification of hydrocarbon flow units, that identifies target intervals for well completions and stimulation programs, and that is needed to estimate permeability through the analysis of well-test data. The net-to-gross pay ratio is input directly to volumetric computations of hydrocarbons in place and thence to "static" estimates of ultimate hydrocarbon recovery; it is a key indicator of hydrocarbon connectivity, and it contributes to the initializing of a reservoir simulator and thence to "dynamic" estimates of ultimate hydrocarbon recovery.


2013 ◽  
Vol 295-298 ◽  
pp. 3183-3191
Author(s):  
Xiang Yi Yi ◽  
Zhi Zhang ◽  
Cheng Yong Li ◽  
De Cai Li ◽  
Sheng Bo Wang

Stress-sensitive widely exists in fractured reservoir. In this paper, a mathematical model of flow in stress-sensitive reservoir with horizontal well is established based on experimental data and with process of linearization. By using of Lord Kelvin point-source solution, Bessel function integration and Poisson superimpose formula, the dimensionless pressure response function of horizontal well in infinite stress-sensitive reservoir is obtained. And then the derivative type curve is calculated. Based on the type curve, the characteristics and influencing factors of the fluid flow through porous medium of horizontal well in stress-sensitive gas reservoir are analyzed.


Sign in / Sign up

Export Citation Format

Share Document