Long Term Forecasting in Shale Reservoirs by Using Rate Transient Analysis

Author(s):  
Delal Gunaydin ◽  
Kenneth George Brown ◽  
Matthew David Porter ◽  
Zhong He ◽  
David John Corinchock ◽  
...  
2020 ◽  
Vol 23 (02) ◽  
pp. 648-663 ◽  
Author(s):  
Mohammadhossein Heidari Sureshjani ◽  
Mohammad Ahmadi ◽  
Jalal Fahimpour

SPE Journal ◽  
2013 ◽  
Vol 18 (04) ◽  
pp. 795-812 ◽  
Author(s):  
C.R.. R. Clarkson ◽  
J.D.. D. Williams-Kovacs

Summary Early fluid production and flowing pressure data gathered immediately after fracture stimulation of multifractured horizontal wells may provide an early opportunity to generate long-term forecasts in shale-gas (and other hydraulically fractured) reservoirs. These early data, which often consist of hourly (if not more frequent) monitoring of fracture/formation fluid rates, volumes, and flowing pressures, are gathered on nearly every well that is completed. Additionally, fluid compositions may be monitored to determine the extent of load fluid recovery, and chemical tracers added during stage treatments to evaluate inflow from each of the stages. There is currently debate within the industry of the usefulness of these data for determining the long-term production performance of the wells. “Rules of thumb” derived from the percentage of load-fluid recovery are often used by the industry to provide a directional indication of well performance. More-quantitative analysis of the data is rarely performed; it is likely that the multiphase-flow nature of flowback and the possibility of early data being dominated by wellbore-storage effects have deterred many analysts. In this work, the use of short-term flowback data for quantitative analysis of induced-hydraulic-fracture properties is critically evaluated. For the first time, a method for analyzing water and gas production and flowing pressures associated with the flowback of shale-gas wells, to obtain hydraulic-fracture properties, is presented. Previous attempts have focused on single-phase analysis. Examples from the Marcellus shale are analyzed. The short (less than 48 hours) flowback periods were followed by long-term pressure buildups (approximately 1 month). Gas + water production data were analyzed with analytical simulation and rate-transient analysis methods designed for analyzing multiphase coalbed-methane (CBM) data. This analogy is used because two-phase flowback is assumed to be similar to simultaneous flow of gas and water during long-term production through the fracture system of coal. One interpretation is that the early flowback data correspond to wellbore + fracture volume depletion (storage). It is assumed that fracture-storage volume is much greater than wellbore storage. This flow regime appears consistent with what is interpreted from the long-term pressure-buildup data, and from the rate-transient analysis of flowback data. Assuming further that the complex fracture network created during stimulation is confined to a region around perforation clusters in each stage, one can see that fluid-production data can be analyzed with a two-phase tank-model simulator to determine fracture permeability and drainage area, the latter being interpreted to obtain an effective (producing) fracture half-length given geometrical considerations. Total fracture half-length, derived from rate-transient analysis of online (post-cleanup) data, verifies the flowback estimates. An analytical forecasting tool that accounts for multiple sequences of post-storage linear flow, followed by late-stage boundary flow, was developed to forecast production with flowback-derived parameters, volumetric inputs, matrix permeability, completion data, and operating constraints. The preliminary forecasts are in very good agreement with online production data after several months of production. The use of flowback data to generate early production forecasts is therefore encouraging, but needs to be tested for a greater data set for this shale play and for other plays, and should not be used for reserves forecasting.


2021 ◽  
Author(s):  
HanYi Wang ◽  
Mukul Sharma ◽  
Harold McGowen

Abstract Market-induced production shut-downs and restarts offer us an opportunity to gather step-rate and shut-in data for pressure transient analysis (PTA) and rate transient analysis (RTA). In this study, we present a unified transient analysis (UTA) to combine PTA and RTA in a single framework. In this new approach continuous production data, step-rate data, shut-in data and re-start data can be visualized and analyzed in a single superposition plot, which can be used to estimate both Afk and infer formation pore pressure in a holistic manner by utilizing all available data. Most importantly, we show that traditional log-log and square root of time plots can lead to false interpretation of the termination of linear-flow or power-law behavior. Field cases are presented to demonstrate the superiority of the newly introduced superposition plot, along with discussion on the calibration of long-term bottom-hole pressure with short-term measurements.


2016 ◽  
Author(s):  
Najeeb Alharthy ◽  
Tadesse Teklu ◽  
Hossein Kazemi ◽  
Ramona Graves

2021 ◽  
Author(s):  
Blake Burget ◽  
Neal Dannemiller ◽  
Dylan Garrett ◽  
Erik Kling

Abstract A seven-step workflow to help subsurface teams establish an initial thesis for optimal completion design (cluster spacing, proppant per cluster) and well spacing in emerging / under-explored resource plays is proposed and executed for the Powder River Basin Niobrara unconventional oil play. The workflow uses Rate Transient Analysis (RTA) to determine the Ac∗k parameter and then walks the reader through how to sequentially decouple the parameter into its constituent parts (frac height (h), number of symmetrical fractures achieved (nf), permeability (k) and fracture half-length (xf)). Once these terms were quantified for each of the case study wells, they were used in a black oil reservoir simulator to compare predicted verses actual cumulative oil performance at 30, 60, 90,120 & 180 days. A long-term production match was achieved using xf as the lone history match parameter. xf verses proppant per effective half-cluster yielded an R2 value of > 0.90. 28 simulation scenarios were executed to represent a range of cluster spacing, proppant per cluster and well spacing scenarios. Economics (ROR and/or NPV10/Net Acre) were determined for each of these scenarios under three different commodity pricing assumptions ($40/$2.50, $50/$2.50 and $60/$2.50). An initial thesis for optimal cluster spacing, proppant per designed cluster and well spacing were determined to be 12’, 47,500 lbs and 8-14 wells per section (based on whether or not fracture asymmetry is considered) when WTI and Henry Hub are assumed to be $50 & $2.50 flat.


2013 ◽  
pp. 143-155
Author(s):  
A. Klepach ◽  
G. Kuranov

The role of the prominent Soviet economist, academician A. Anchishkin (1933—1987), whose 80th birth anniversary we celebrate this year, in the development of ideas and formation of economic forecasting in the country at the time when the directive planning acted as a leading tool of economic management is explored in the article. Besides, Anchishkin’s special role is noted in developing a comprehensive program of scientific and technical progress, an information basis for working out long-term forecasts of the country’s development, moreover, his contribution to the creation of long-term forecasting methodology and improvement of the statistical basis for economic analysis and economic planning. The authors show that social and economic forecasting in the period after 1991, which has undertaken a number of functions of economic planning, has largely relied on further development of Anchishkin’s ideas, at the same time responding to new challenges for the Russian economy development during its entry into the world economic system.


Sign in / Sign up

Export Citation Format

Share Document