Negative Flash for Calculating the Intersecting Key Tie-lines in Multicomponent Gas Injection

2014 ◽  
Author(s):  
Wei Yan ◽  
Michael L. Michelsen ◽  
Erling H. Stenby
SPE Journal ◽  
2015 ◽  
Vol 20 (03) ◽  
pp. 565-578 ◽  
Author(s):  
Mohsen Rezaveisi ◽  
Russell T. Johns ◽  
Kamy Sepehrnoori

Summary Standard equation-of-state-based phase equilibrium modeling in reservoir simulators involves computationally intensive and time-consuming iterative calculations for stability analysis and flash calculations. Therefore, speeding up stability analysis and flash calculations and improving robustness of the calculations are of utmost importance in compositional reservoir simulation. Prior knowledge of the tie-lines traversed by the solution of a gas-injection problem translates into valuable information with significant implications for speed and robustness of reservoir simulators. The solution of actual-gas-injection processes follows a very complex route because of dispersion, pressure variations, and multidimensional flow. The multiple-mixing-cell (MMC) method, originally developed to calculate minimum miscibility pressure of a gas-injection process, accounts for various levels of mixing of the injected gas and initial oil. This observation suggests that the MMC tie-lines developed upon repeated contacts may represent a significant fraction of the actual simulation tie-lines encountered. We investigate this idea and use three tie-line-based K-value-simulation methods for application of MMC tie-lines in reservoir simulation. In two of the tie-line-based K-value-simulation methods, we examine tabulation and interpolation of MMC tie-lines in a framework similar to the compositional-space adaptive-tabulation (CSAT) method. In the third method, we perform K-value simulations based on inverse-distance interpolation of K-values from MMC tie-lines. We demonstrate that for the displacements examined, the MMC tie-lines are sufficiently close to the actual simulation tie-lines and provide excellent coverage of the simulation compositional route. The MMC-based methods are then compared with the computational time by use of other methods of phase-equilibrium calculations, including a modified application of CSAT (an adaptive tie-line-based K-value simulation), a method using only heuristic techniques, and the standard method in an implicit-pressure/explicit-concentration-type reservoir simulator. The results show that tabulation and interpolation of MMC tie-lines significantly improve phase equilibrium and computational time compared with the standard approach, with acceptable accuracy. The results also show that computational performance of the MMC-based methods with only prior tie-line tables is very close to that of CSAT, which requires flash calculations during simulation. The K-value simulations by use of MMC-based tie-line-interpolation methods improve the total computational time up to 51% in the cases studied, with acceptable accuracy. The results suggest that MMC tie-lines represent a significant fraction of the actual tie-lines during simulation and can be used to significantly improve speed and robustness of phase-equilibrium calculations in reservoir simulators.


2007 ◽  
Vol 10 (05) ◽  
pp. 482-488 ◽  
Author(s):  
Kristian Jessen ◽  
Erling Halfdan Stenby

Summary Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO2 sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid and the injected fluid(s). The mixtures that form when gas displaces oil in a porous medium will, in many cases, differ significantly from compositions created in swelling tests and other standard pressure/volume/temperature (PVT) experiments. Multicontact experiments (e.g., slimtube displacements) are often used to condition an EOS model before application in performance evaluation of miscible displacements. However, no clear understanding exists of the impact on the resultant accuracy of the selected characterization procedure when the fluid description is subsequently included in reservoir simulation. In this paper, we present a detailed analysis of the quality of two different characterization procedures over a broad range of reservoir fluids (13 samples) for which experimental swelling-test and slimtube-displacement data are available. We explore the impact of including swelling-test and slimtube experiments in the data reduction and demonstrate that for some gas/oil systems, swelling tests do not contribute to a more accurate prediction of multicontact miscibility. Finally, we report on the impact that use of EOS models based on different characterization procedures can have on recovery predictions from dynamic 1D displacement calculations. Introduction During the past few decades, a significant effort has been invested in the studies and development of improved-oil-recovery processes. From a technical point of view, gas injection can be a very efficient method for improving the oil production, particularly in the case when miscibility develops during the displacement process. The lowest pressure at which a gas should be injected into the reservoir to obtain the multicontact miscible displacement—the minimum miscibility pressure (MMP)—has consequently attained a very important status in EOR studies. Various methods for measuring and calculating the MMP have been proposed in the literature. Many of these are based on simplifications such as the ternary representation of the compositional space. This method fails to honor the existence of a combined mechanism controlling the development of miscibility in real reservoir fluids. Zick (1986) and Stalkup (1987) described the existence of the condensing/vaporizing mechanism. They showed that the development of miscibility (MMP) in multicomponent gas-displacement processes could, independent of the mechanism controlling the development of miscibility, be predicted accurately by 1D compositional simulations. A semianalytical method for predicting the MMP was later presented by Wang and Orr (1997), who played an important role in the development and application of the analytical theory of gas-injection processes. Jessen et al. (1998) subsequently developed an efficient algorithm for performing these calculations, reducing the MMP calculation time to a few seconds even for fluid descriptions of 10 components or more. Later, Jessen et al. (2001) used this approach to generate approximate solutions to the dispersion-free, 1D-displacement problem for multicomponent gas-injection processes. Analytical and numerical methods for predicting the performance of a gas-injection process depend on an EOS to predict the phase behavior of the mixtures that form in the course of a displacement process. The role of the phase behavior in relation to numerical diffusion in compositional reservoir simulation has been pointed out previously by Stalkup (1990) and by Stalkup et al. (1990). Recently, Jessen et al. (2004) proposed a method to quantify the interplay of the phase behavior and numerical diffusion in a finite-difference simulation of a gas-injection process. By analyzing the phase behavior of the injection-gas/reservoir-fluid system, a measure of the impact, referred to as the dispersive distance, can be calculated. The dispersive distance is useful when designing and interpreting large-scale compositional reservoir simulations.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dangke Ge ◽  
Haiying Cheng ◽  
Mingjun Cai ◽  
Yang Zhang ◽  
Peng Dong

Gas injection processes are among the effective methods for enhanced oil recovery. Miscible and/or near miscible gas injection processes are among the most widely used enhanced oil recovery techniques. The successful design and implementation of a miscible gas injection project are dependent upon the accurate determination of minimum miscibility pressure (MMP), the pressure above which the displacement process becomes multiple-contact miscible. This paper presents a method to get the characteristic curve of multiple-contact. The curve can illustrate the character in the miscible and/or near miscible gas injection processes. Based on the curve, we suggest a new model to make an accurate prediction for CO2-oil MMP. Unlike the method of characteristic (MOC) theory and the mixing-cell method, which have to find the key tie lines, our method removes the need to locate the key tie lines that in many cases is hard to find a unique set. Moreover, unlike the traditional correlation, our method considers the influence of multiple-contact. The new model combines the multiple-contact process with the main factors (reservoir temperature, oil composition) affecting CO2-oil MMP. This makes it is more practical than the MOC and mixing-cell method, and more accurate than traditional correlation. The method proposed in this paper is used to predict CO2-oil MMP of 5 samples of crude oil in China. The samples come from different oil fields, and the injected gas is pure CO2. The prediction results show that, compared with the slim-tube experiment method, the prediction error of this method for CO2-oil MMP is within 2%.


2011 ◽  
Vol 361-363 ◽  
pp. 516-519
Author(s):  
Ju Li ◽  
Xin Wei Liao ◽  
Su Kun

Miscible and/or near miscible gas injection processes are among the most widely used enhanced oil recovery techniques. The successful design and implementation of a miscible gas injection project is dependent upon the accurate determination of minimum miscible pressure (MMP), the pressure above which the displacement process becomes multi-contact miscible. Analytical methods, which are inexpensive and quick to use, have been developed to estimate MMP for complex fluid characterizations. However, many problems still existed in the analytical calculation, which will lead to the failure of calculation, or wrong result. This paper shows how the initial tie line could be calculated when the component of injection gas doesn’t included in the crude oil. And moreover, how to get a complete set of initial value for the equations of crossover tie lines, and the influence of EOS for the result of key tie lines is analyzed simultaneously.


SPE Journal ◽  
2001 ◽  
Vol 6 (04) ◽  
pp. 442-451 ◽  
Author(s):  
Kristian Jessen ◽  
Yun Wang ◽  
Pavel Ermakov ◽  
Jichun Zhu ◽  
Franklin M. Orr

2014 ◽  
Vol 53 (36) ◽  
pp. 14094-14112 ◽  
Author(s):  
Wei Yan ◽  
Michael L. Michelsen ◽  
Erling H. Stenby

2004 ◽  
Author(s):  
P.G. Bedrikovetsky ◽  
A.A. Shapiro ◽  
A.P. Pires

1999 ◽  
Author(s):  
Kristian Jessen ◽  
Yun Wang ◽  
Panvel Ermakov ◽  
Jichun Zhu ◽  
Franklin M. Orr

Sign in / Sign up

Export Citation Format

Share Document