Analytical Solutions and Derivation of Relative Permeabilities for Water-Heavy Oil Displacement and Gas-Heavy Oil Gravity Drainage Under Non-Isothermal Conditions

2016 ◽  
Vol 19 (01) ◽  
pp. 181-191 ◽  
Author(s):  
F. J. Argüelles-Vivas ◽  
T.. Babadagli

Summary Analytical models were developed for non-isothermal gas/heavy-oil gravity drainage and water-heavy oil displacements in round capillary tubes including the effects of a temperature gradient throughout the system. By use of the model solution for a bundle of capillaries, relative permeability curves were generated at different temperature conditions. The results showed that water/gas-heavy oil interface location, oil-drainage velocity, and production rate depend on the change of oil properties with temperature. The displacement of heavy oil by water or gas was accelerated under a positive temperature gradient, including the spontaneous imbibition of water. Relative permeability curves were greatly affected by temperature gradient and showed significant changes compared with the curves at constant temperature. Clarifications were made as to the effect of variable temperature compared with the constant (but high) temperatures throughout the bundle of capillaries.

2014 ◽  
Vol 887-888 ◽  
pp. 53-56 ◽  
Author(s):  
Wen Chao Jiang ◽  
Jian Zhang ◽  
Kao Ping Song ◽  
En Gao Tang ◽  
Bin Huang

Different kinds of compound solutions were prepared by using different concentrations of hydrophobically associating polymers and sulfonate type surfactant. The static viscosity and interfacial tension of these solutions were measured. On the experimental conditions of the Suizhong 36-1 oilfield, the relative permeability curves of the water flooding and the surfactant/polymer combination flooding were measured through the constant speed unsteady method and the experimental data were processed through the way of J.B.N. The several existing kinds of viscosity processing methods of non-newtonian fluid were compared and analysed , and a new way is put forward . The results show that the relative permeability of the flooding phase is very low while displacing the heavy oil; the relative permeability of oil in combination flooding is higher than that in water flooding, the relative permeability of flooding phase in combination flooding is lower than that in water flooding and the residual oil saturation of combination flooding is lower than that of water flooding. Meanwhile, the concentrations of polymer and surfactant have a great influence on the surfactant/polymer combination relative permeability curves.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2308-2316 ◽  
Author(s):  
K. S. Schmid ◽  
N.. Alyafei ◽  
S.. Geiger ◽  
M. J. Blunt

Summary We present analytical solutions for capillary-controlled displacement in one dimension by use of fractional-flow theory. We show how to construct solutions with a spreadsheet that can be used for the analysis of experiments as well as matrix-block-scale recovery in field settings. The solutions can be understood as the capillary analog to the classical Buckley-Leverett solution (Buckley and Leverett 1942) for viscous-dominated flow, and are valid for cocurrent and countercurrent spontaneous imbibition (SI), as well as for arbitrary capillary pressure and relative permeability curves. They can be used to study the influence of wettability, predicting saturation profiles and production rates characteristic for water-wet and mixed-wet conditions. We compare our results with in-situ measurements of saturation profiles for SI in a water-wet medium. We show that the characteristic shape of the saturation profile is consistent with the expected form of the relative permeabilities. We discuss how measurements of imbibition profiles, in combination with other measurements, could be used to determine relative permeability and capillary pressure.


2006 ◽  
Vol 9 (03) ◽  
pp. 239-250 ◽  
Author(s):  
Josephina M. Schembre ◽  
Guo-Qing Tang ◽  
Anthony R. Kovscek

Summary The evaluation of thermal-recovery processes requires relative permeability functions, as well as information about the effects of temperature on these functions. There are significant challenges encountered when estimating relative permeability from laboratory data, such as the accuracy of measurements and generalized assumptions in the interpretation techniques. A novel method is used here to estimate relative permeability and capillary pressure from in-situ aqueous-phase saturation profiles obtained from X-ray computerized tomography (CT) scanning during high-temperature imbibition experiments. Relative permeability and capillary pressure functions are interpreted simultaneously, including possible nonequilibrium effects. Results obtained show a systematic shift toward increased water-wettability with increasing temperature for diatomite reservoir core. The measured changes in relative permeability are linked to the effect of temperature on the adhesion of oil-coated fines to rock surfaces and, ultimately, to rock/fluid interactions. Introduction An understanding of the effects of temperature on wettability and relative permeability functions is essential to optimize and forecast the results of diatomite thermal-recovery projects. Most of the controversy regarding the effect of temperature on relative permeability is caused by the mechanisms involved in rock-wettability change that are dependent on both fluid and rock characteristics. A secondary, and equally important, problem is the technique used to process the data, such as oil recovery, phase saturation, or pressure, as well as data interpretation in the form of relative permeability curves. This paper re-examines the influence of temperature on rock/fluid interactions and heavy-oil relative permeability of diatomite from a core-level experimental and a pore-level perspective. We find experimentally and theoretically that fine particles are released from pore walls under conditions of elevated temperature, high pH, and moderate to low aqueous-phase salinity. The release of fines correlates with changes in relative permeability curves toward greater water-wetness. The mechanism of fines release provides new understanding of a mode of wettability alteration at elevated temperature. This paper is organized as follows. First, a synopsis of the literature is presented, followed by a discussion of recent developments in the understanding of wettability alteration. Second, the experimental method and the relative permeability interpretative methodology are outlined. Third, relative permeability results interpreted from field core samples at temperature are presented. Discussion and conclusions round out the paper.


Sign in / Sign up

Export Citation Format

Share Document