EXPERIMENTAL AND SIMULATION STUDIES OF HEAVY OIL/WATER RELATIVE PERMEABILITY CURVES: EFFECT OF TEMPERATURE

Author(s):  
Manoochehr Akhlaghinia ◽  
Farshid Torabi ◽  
Christine W. Chan
2006 ◽  
Vol 9 (03) ◽  
pp. 239-250 ◽  
Author(s):  
Josephina M. Schembre ◽  
Guo-Qing Tang ◽  
Anthony R. Kovscek

Summary The evaluation of thermal-recovery processes requires relative permeability functions, as well as information about the effects of temperature on these functions. There are significant challenges encountered when estimating relative permeability from laboratory data, such as the accuracy of measurements and generalized assumptions in the interpretation techniques. A novel method is used here to estimate relative permeability and capillary pressure from in-situ aqueous-phase saturation profiles obtained from X-ray computerized tomography (CT) scanning during high-temperature imbibition experiments. Relative permeability and capillary pressure functions are interpreted simultaneously, including possible nonequilibrium effects. Results obtained show a systematic shift toward increased water-wettability with increasing temperature for diatomite reservoir core. The measured changes in relative permeability are linked to the effect of temperature on the adhesion of oil-coated fines to rock surfaces and, ultimately, to rock/fluid interactions. Introduction An understanding of the effects of temperature on wettability and relative permeability functions is essential to optimize and forecast the results of diatomite thermal-recovery projects. Most of the controversy regarding the effect of temperature on relative permeability is caused by the mechanisms involved in rock-wettability change that are dependent on both fluid and rock characteristics. A secondary, and equally important, problem is the technique used to process the data, such as oil recovery, phase saturation, or pressure, as well as data interpretation in the form of relative permeability curves. This paper re-examines the influence of temperature on rock/fluid interactions and heavy-oil relative permeability of diatomite from a core-level experimental and a pore-level perspective. We find experimentally and theoretically that fine particles are released from pore walls under conditions of elevated temperature, high pH, and moderate to low aqueous-phase salinity. The release of fines correlates with changes in relative permeability curves toward greater water-wetness. The mechanism of fines release provides new understanding of a mode of wettability alteration at elevated temperature. This paper is organized as follows. First, a synopsis of the literature is presented, followed by a discussion of recent developments in the understanding of wettability alteration. Second, the experimental method and the relative permeability interpretative methodology are outlined. Third, relative permeability results interpreted from field core samples at temperature are presented. Discussion and conclusions round out the paper.


2016 ◽  
Vol 19 (01) ◽  
pp. 181-191 ◽  
Author(s):  
F. J. Argüelles-Vivas ◽  
T.. Babadagli

Summary Analytical models were developed for non-isothermal gas/heavy-oil gravity drainage and water-heavy oil displacements in round capillary tubes including the effects of a temperature gradient throughout the system. By use of the model solution for a bundle of capillaries, relative permeability curves were generated at different temperature conditions. The results showed that water/gas-heavy oil interface location, oil-drainage velocity, and production rate depend on the change of oil properties with temperature. The displacement of heavy oil by water or gas was accelerated under a positive temperature gradient, including the spontaneous imbibition of water. Relative permeability curves were greatly affected by temperature gradient and showed significant changes compared with the curves at constant temperature. Clarifications were made as to the effect of variable temperature compared with the constant (but high) temperatures throughout the bundle of capillaries.


2010 ◽  
Vol 13 (02) ◽  
pp. 306-312 ◽  
Author(s):  
Medhat M. Kamal ◽  
Yan Pan

Summary A new well-testing-analysis method is presented. The method allows for calculating the absolute permeability of the formation in the area influenced by the test and the average saturations in this area. Traditional pressure-transient-analysis methods have been developed and are completely adequate for single-phase flow in the reservoir. The proposed method is not intended for these conditions. The method applies to two-phase flow in the reservoir (oil and water or oil and gas). Future expansion to three-phase flow is possible. Current analysis methods yield only the effective permeability for the dominant flowing phase and the "total mobility" of all phases. The new method uses the surface-flow rates and fluid properties of the flowing phases and the same relative permeability relations used in characterizing the reservoir and predicting its future performance. The method has been verified by comparing the results from analyzing several synthetic tests that were produced by a numerical simulator with the input values. Use of the method with field data is also described. The new method could be applied wherever values of absolute permeability or fluid saturations are used in predicting well and reservoir performance. Probably, the major impact would be in reservoir simulation studies in which the need to transform welltesting permeability to simulator input values is eliminated and additional parameters (fluids saturations) become available to help history match the reservoir performance. This work will also help in predicting well flow rates and in situations in which absolute permeability changes with time (e.g., from compaction). Results showed that the values of absolute permeability in water/oil cases could be reproduced within 3% of the correct values and within 5% of the correct values in gas/oil cases. Errors in calculating the fluid saturations were even lower. One of the main advantages of this method is that the relative permeability curves used in calculating the absolute permeability and average saturations, and later on in numerical reservoir simulation studies, are the same, ensuring a consistent process. The proposed method does not address the question of which set of relative permeability curves should be used. This question should be answered by the engineer performing the reservoir engineering/simulation study. The proposed method mainly is meant to provide consistent results for predicting the reservoir performance using whatever relative permeability relations that are being used in the reservoir simulation model. The method does not induce any additional errors in determining the average saturation or absolute permeability over what may result from using these specific relative permeability curves in the reservoir simulation study. The impact of this study will be to expand the use of information already contained in transient data and surface flow rates of all phases. The results will provide engineers with additional parameters to improve and speed up history matching and the prediction of well and reservoir performances in just about all studies.


1999 ◽  
Author(s):  
Akin Serhat ◽  
Louis M. Castanier ◽  
William E. Brigham

Sign in / Sign up

Export Citation Format

Share Document