Effect of Oil Viscosity on Heavy Oil-Water Relative Permeability Curves

Author(s):  
Jinxun Wang ◽  
Mingzhe Dong ◽  
Koorosh Asghari
2016 ◽  
Vol 19 (01) ◽  
pp. 181-191 ◽  
Author(s):  
F. J. Argüelles-Vivas ◽  
T.. Babadagli

Summary Analytical models were developed for non-isothermal gas/heavy-oil gravity drainage and water-heavy oil displacements in round capillary tubes including the effects of a temperature gradient throughout the system. By use of the model solution for a bundle of capillaries, relative permeability curves were generated at different temperature conditions. The results showed that water/gas-heavy oil interface location, oil-drainage velocity, and production rate depend on the change of oil properties with temperature. The displacement of heavy oil by water or gas was accelerated under a positive temperature gradient, including the spontaneous imbibition of water. Relative permeability curves were greatly affected by temperature gradient and showed significant changes compared with the curves at constant temperature. Clarifications were made as to the effect of variable temperature compared with the constant (but high) temperatures throughout the bundle of capillaries.


2012 ◽  
Vol 268-270 ◽  
pp. 547-550
Author(s):  
Qing Wang Liu ◽  
Xin Wang ◽  
Zhen Zhong Fan ◽  
Jiao Wang ◽  
Rui Gao ◽  
...  

Liaohe oil field block 58 for Huancai, the efficiency of production of thickened oil is low, and the efficiency of displacement is worse, likely to cause other issues. Researching and developing an type of Heavy Oil Viscosity Reducer for exploiting. The high viscosity of W/O emulsion changed into low viscosity O/W emulsion to facilitate recovery, enhanced oil recovery. Through the experiment determine the viscosity properties of Heavy Oil Viscosity Reducer. The oil/water interfacial tension is lower than 0.0031mN•m-1, salt-resisting is good. The efficiency of viscosity reduction is higher than 90%, and also good at 180°C.


2014 ◽  
Vol 887-888 ◽  
pp. 53-56 ◽  
Author(s):  
Wen Chao Jiang ◽  
Jian Zhang ◽  
Kao Ping Song ◽  
En Gao Tang ◽  
Bin Huang

Different kinds of compound solutions were prepared by using different concentrations of hydrophobically associating polymers and sulfonate type surfactant. The static viscosity and interfacial tension of these solutions were measured. On the experimental conditions of the Suizhong 36-1 oilfield, the relative permeability curves of the water flooding and the surfactant/polymer combination flooding were measured through the constant speed unsteady method and the experimental data were processed through the way of J.B.N. The several existing kinds of viscosity processing methods of non-newtonian fluid were compared and analysed , and a new way is put forward . The results show that the relative permeability of the flooding phase is very low while displacing the heavy oil; the relative permeability of oil in combination flooding is higher than that in water flooding, the relative permeability of flooding phase in combination flooding is lower than that in water flooding and the residual oil saturation of combination flooding is lower than that of water flooding. Meanwhile, the concentrations of polymer and surfactant have a great influence on the surfactant/polymer combination relative permeability curves.


Fuel ◽  
2016 ◽  
Vol 163 ◽  
pp. 196-204 ◽  
Author(s):  
Farshid Torabi ◽  
Nader Mosavat ◽  
Ostap Zarivnyy

Sign in / Sign up

Export Citation Format

Share Document