scholarly journals An Analytical Model for Multilayer Well Production Evaluation to Overcome Cross-Flow Problem

2017 ◽  
Author(s):  
Farizal Hakiki ◽  
Aris T. Wibowo ◽  
Silvya D. Rahmawati ◽  
Amega Yasutra ◽  
Pudjo Sukarno
Author(s):  
W. G. Sim ◽  
Njuki W. Mureithi

The analytical model (Sim; 2007), to predict the two-phase damping ratio for upward cross-flow through horizontal tube bundles, has been evaluated. The damping model was formulated, based on Feenstra’s model (2000) for void fraction and various models (homogeneous, Levy, Martinelli-Nelson and Marchaterre) for two-phase friction multiplier. The analytical results of drag coefficient on a cylinder and two-phase Euler number were compared with the experimental results by Sim-Mureithi (2010). The factor, a relation between frictional pressure drop and the hydraulic drag coefficients, could be determined by considering experimental results. The two-phase damping ratios, given by the analytical model, were compared with existing experimental results. It was found that the model, based on Marchaterre’s model, is suitable for air-water mixture while the Martinelli-Nelson’s model for steam-water and Freon mixtures. The two-phase damping ratio is independent on pitch mass flux for air-water mixture, but it is more or less influenced by the mass flux for steam-water/Freon(134) mixtures. The two-phase damping ratios, given by the present model, agree well with experimental results for a sufficiently wide range of pitch mass ratio, quality and p/d ratios.


2021 ◽  
Author(s):  
Akram R. Barghouti ◽  
M. Imran Javed ◽  
Saud A Al-Shuwaier

Abstract The revolution of smart well completions has been significantly enhancing the oil & gas industry in the recent years, The completions allow for higher PIs, better sweep, longer well life, longer reservoir contact and better water management. These effects came into play and needed once O&G industry moved to drilling multi-lateral wells. This paper represents a tri-lateral well that was drilled with high reservoir contact. The production optimization was completed to evaluate the contribution of each lateral and decide on the future production strategy for the well. This evaluation also allowed to test the functionality of the Down Hole Flow Control Valves (DHFCVs). Further, determining this functionality allowed identifying cross flow between the ICVs and the laterals. The optimization included multi-stage testing of each lateral to ascertain the high oil & water contributors. The water contribution was recorded across each lateral to optimize the water production and enhance the well productivity. The productivity index was calculated using IPR modeling utilizing Pipe-Sim software based on the commingled multi-rate tests. To further plan the way forward on the well production, a flowchart was established during the optimization operation to guide through the optimization process, identify each lateral water contribution, and production strategy after the operation. This optimization has resulted in a significant cost avoidance, avoiding coil tubing horizontal logging intervention operations in all the three laterals. The details of the testing stages scenarios and the recommendations of the production strategies will be shared in this paper.


2017 ◽  
Vol 35 (5) ◽  
pp. 545-557
Author(s):  
Hyemin Park ◽  
Youngho Jang ◽  
Joongseop Hwang ◽  
Joohyung Kim ◽  
Jinju Han ◽  
...  

2013 ◽  
Vol 735 ◽  
pp. 347-380 ◽  
Author(s):  
Robert S. Downs ◽  
Edward B. White

AbstractThe cross-flow instability that arises in swept-wing boundary layers has resisted attempts to describe the path from disturbance initiation to transition. Following concerted research efforts, surface roughness and free-stream turbulence have been identified as the leading providers of initial disturbances for cross-flow instability growth. Although a significant body of work examines the role of free-stream turbulence in the cross-flow problem, the data more relevant to the flight environment (turbulence intensities less than 0.07 %) are sparse. A series of recent experiments indicates that variations within this range may affect the initiation or growth of cross-flow instability amplitudes, hindering comparison among results obtained in different disturbance environments. To address this problem, a series of wind tunnel experiments is performed in which the free-stream turbulence intensity is varied between 0.02 % and 0.2 % of free-stream velocity,${U}_{\infty } $. Measurements of the stationary and travelling mode amplitudes are made in the boundary layer of a 1.83 m chord,$45{{}^\circ} $swept-wing model. These results are compared to those of similar experiments at higher turbulence levels to broaden the current knowledge of this portion of the cross-flow problem. It is observed that both free-stream turbulence and surface roughness contribute to the initiation of unsteady disturbances, and that free-stream turbulence affects the development of both stationary and unsteady cross-flow disturbances. For the range tested, enhanced free-stream turbulence advances the transition location except when a subcritically spaced roughness array is employed.


Volume 1 ◽  
2004 ◽  
Author(s):  
Yongkang Chen ◽  
Mark M. Weislogel

The problem of capillary flow in interior corners that are rounded is re-visited analytically in this work. By the appropriate geometric scaling, and through the introduction of a new parameter that features the roundedness of the corner, the Navier-Stokes equation is reduced to a convenient form for both numerical and analytical solution. The scaling and analysis of the problem is expected to significantly reduce the reliance on numerical data for such problems, and the design process can be both shortened and improved as a result. For capillary flows of perfect wetting fluids in the rounded corner with an advancing tip, a finite interfacial curvature related to the corner roundedness results at the tip. Accordingly, an outer and inner region of the flow is suggested based on the impact of the corner roundedness on the flow. In this study, asymptotic solutions of the geometrical ‘cross-flow’ problem for the outer region are sought under several constraints and are expected to narrowly bracket parallel numerical solutions. A complete understanding of the flow will be obtained only after the cross-flow problem for the inner region is solved. However, for the flow in the outer region a similarity solution is obtained and presented that reveals how roundedness retards the flow.


2013 ◽  
Vol 17 (4) ◽  
pp. 1233-1243
Author(s):  
Amin Lotfiani ◽  
Shahram Khalilarya

Tangentially-fired furnaces (TFF) are one of the modified types of furnaces which have become more attractive in the field of industrial firing systems in recent years. Multi-zone thermodynamic models can be used to study the effect of different parameters on the operation of TFF readily and economically. Flow and mixing sub-model is a necessity in multi-zone models. In the present work, the semi-analytical model previously established by the authors for the prediction of the behavior of coaxial turbulent gaseous jets is extended to be used in a single-chamber TFF with square horizontal cross-sections and to form the flow and mixing sub-model of the future multi-zone model for the simulation of this TFF. A computer program is developed to implement the new extended model. Computational fluid dynamics (CFD) simulations are carried out to validate the results of the new model. In order to verify the CFD solution procedure, a turbulent round jet injected into cross flow is simulated. The calculated jet trajectory and velocity profile are compared with other experimental and numerical data and good agreement is observed. Results show that the present model can provide very fast and reasonable predictions of the flow and concentration fields in the TFF of interest.


2013 ◽  
Vol 58 (2) ◽  
pp. 287-300
Author(s):  
Wenting Qin ◽  
Andrew K. Wojtanowicz ◽  
Christopher D. White

Horizontal well has been widely used as a solution for oil reservoir with underlain strong water drive. The advantage of horizontal well over vertical well is to increase the reservoir contact and thereby enhance well productivity. Because of that, horizontal well can provide a very low pressure drawdown to avoid the water coning and still sustain a good productivity. However, the advantage of the large contact area with reservoir will soon become the disadvantage when the water breakthrough into the horizontal well. The water cut will increase rapidly due to the large contact area with reservoir and it may cause the productivity loss of the whole well. Therefore, keeping the horizontal well production rate under critical rate is crucial. However, existing models of critical rate either oversimplify or misrepresent the nature of the WOC interface, resulting in misestimating the critical rate. In this paper, a new analytical model of critical rate is presented to provide accurate calculations on this subject for project design and performance predictions. Unlike the conventional approach, in which the flow restriction due to the water crest shape has been neglected; including the distortions of oil-zone flow caused by the rising water crest, the new analytical model gives an accurate simultaneous determination of the critical rate, water crest shape and the pressure distribution in the oil zone by using hodograph method combined with conformal mapping. The accuracy of this model was confirmed by numerical simulations. The results show that neglecting the presence of water crest leads to up to 50 percent overestimation of critical rates.


1974 ◽  
Vol 96 (4) ◽  
pp. 263-267 ◽  
Author(s):  
R. D. Blevins

An analytical model for flow-induced vibration of a tube row in a cross flow is formulated. A criterion for the onset of instability is developed. The tubes are modeled with different stiffnesses and damping normal and parallel to the free stream to simulate effects which arise in heat exchangers. The critical reduced velocity required for the onset of instability is shown to increase sharply with the separation of natural frequency between tubes. The effect of an adjacent wall and rows composed of a small number of tubes is explored. The model reduces to an experimentally validated criterion for symmetrically supported tubes.


Sign in / Sign up

Export Citation Format

Share Document