Innovative Method to Optimize Down Hole Control Valves by Well Modeling

2021 ◽  
Author(s):  
Akram R. Barghouti ◽  
M. Imran Javed ◽  
Saud A Al-Shuwaier

Abstract The revolution of smart well completions has been significantly enhancing the oil & gas industry in the recent years, The completions allow for higher PIs, better sweep, longer well life, longer reservoir contact and better water management. These effects came into play and needed once O&G industry moved to drilling multi-lateral wells. This paper represents a tri-lateral well that was drilled with high reservoir contact. The production optimization was completed to evaluate the contribution of each lateral and decide on the future production strategy for the well. This evaluation also allowed to test the functionality of the Down Hole Flow Control Valves (DHFCVs). Further, determining this functionality allowed identifying cross flow between the ICVs and the laterals. The optimization included multi-stage testing of each lateral to ascertain the high oil & water contributors. The water contribution was recorded across each lateral to optimize the water production and enhance the well productivity. The productivity index was calculated using IPR modeling utilizing Pipe-Sim software based on the commingled multi-rate tests. To further plan the way forward on the well production, a flowchart was established during the optimization operation to guide through the optimization process, identify each lateral water contribution, and production strategy after the operation. This optimization has resulted in a significant cost avoidance, avoiding coil tubing horizontal logging intervention operations in all the three laterals. The details of the testing stages scenarios and the recommendations of the production strategies will be shared in this paper.

2021 ◽  
Author(s):  
Maksim Filev ◽  
Vadim Soldatov ◽  
Igor Novikov ◽  
Jianhua Xu ◽  
Kirill Ovchinnikov ◽  
...  

Abstract The tracer-based production logging technology can be used to obtain the well production data continuously for several years without the need for risky well interventions and expensive equipment. The paper examines the case of placing polymer-coated tracers dopped proppant in a horizontal well with ten multi-stage frac intervals and using two different tracers dopped proppant codes for two frac ports (the first and the last ones) to identify the performance of the far and near zones of a hydraulic fracture. Upon the completion of the hydraulic fracturing operations, the collected reservoir fluid samples were studied in the laboratory. Chemical tracers contained in the samples were detected by flow cytofluorometry using custom-tailored machine learning-based software. The studies helped identify the productivity of each frac port, calculate the contribution of each port in percentage points, and also evaluate the productivity of the near and far hydraulic fracture zones in the first and the last intervals. The analysis provided data on the exact content of oil and water in the production profile for each frac interval. The results of tracer-based logging in the well in question revealed that the interval productivity is changing in the course of several months of surveillance. The most productive ports and those showing increasing oil flow rate were identified during quantitative analysis. The use of tracer dopped proppant with different codes within one multi-stage frac interval enabled detecting a peak release of chemical tracers from the far fracture zone in the initial periods of well operation followed by a consistent smoothing of the far and near zones’ production profiles. Laboratory analysis of reservoir fluid samples and hydraulic fracturing simulations proved the uniform distribution of proppant across the entire reservoir pay zone and laid the foundation for further research required to better understand the fracture geometry and reduce uncertainties in production optimization operations.


2021 ◽  
Author(s):  
Aleksander Valerievich Miroshnichenko ◽  
Valery Alekseevich Korotovskikh ◽  
Timur Ravilevich Musabirov ◽  
Aleksei Eduardovich Fedorov ◽  
Khakim Khalilovich Suleimanov

Abstract The deterioration of the reservoir properties of potential oil and gas bearing areas on mature and green fields, as well as the increase in the volume of hard-to-recover reserves on low-permeable reservoirs set us new challenges in searching and using effective development technologies to maintain and even increase the oil production levels. Based on successful international experience, Russian oil and gas companies use horizontal wells (HW) with multi-stage hydraulic fracturing (MSHF) for the cost-effective development of low-permeable reservoirs. Thus, since the first pilot works of drilling technologies and completion of HW with MSHF in 2011, at the beginning of 2020, over 1,200 HW with MSHF were drilled and came on stream at the fields of LLC RN-Yuganskneftegaz, about half of which are at the exploitation play AS10-12 of the northern license territory (NLT) of the Priobskoye field. In searching the best technologies and engineering solutions, the company tested different lengths of horizontal section of HW, the number of hydraulic fracturing (HF) stages and distances between hydraulic fracturing ports, as well as different specific mass of the proppant per frac port. Recently, there has been a tendency in design solutions to increase the length of the HWs and the number of hydraulic fractures with a decreasing distance between the frac ports and a decreasing specific mass of the proppant per frac port. This work studies the actual and theoretical efficiency of HW with MSHF of various designs (different lengths of horizontal section of HW and the number of HF stages) and to assess the viability of increasing the technological complexity, as well as to analyze the actual impact of loading the proppant mass per port on performing HW with MSHF. The study is based on the results of the analysis of the factual experience accumulated over the entire history of the development of the exploitation play AS10-12 of the NLT of the Priobskoye field of the Rosneft Company. In studying the viability of increasing the technological complexity, especially, increasing the length of horizontal section of HW, increasing the number of HF stages, and reducing the distance between the frac ports: we discovered the typical methodological errors made in analyzing the efficiency of wells of various designs; we developed the methodology for analysis of the actual multiplicity of indicators of wells of various designs, in particular, HW with MSHF relative to deviated wells (DW) with HF; we carried out the statistical analysis of the actual values of the multiplicity of performance indicators and completion parameters of HW with MSHF of various designs relative to the surrounding DW with HF of the exploitation play AS10-12 of the NLT of the Priobskoye field; we performed the theoretical calculation of the multiplicity of the productivity coefficient for the HW with MSHF of various designs relative to DW with HF for the standard development system of the exploitation play AS10-12 of the NLT of the Priobskoye field; we compared the actual and theoretical results. The paper also presents the results of studying the actual effect of changes of proppant's mass per port on performance indicators of HW with MSHF of the same design and with an increase in the number of fractures of the hydraulic fracturing without changing the length of horizontal section of HW. As for performance indicators, being the basis for estimating the efficiency of HW with MSHF of various designs, we used the productivity index per meter of the effective reservoir thickness and the cumulative fluid production per meter of the effective reservoir thickness per a certain period of operation. And as the completion parameters, we used the length of the horizontal section of HW, the number of HF stages, the distance between the frac ports, and the specific mass of the proppant per meter of the effective reservoir thickness per frac port. The results of this work are the determining vector of development for future design decisions in improving the efficiency of HW with MSHF.


2015 ◽  
Author(s):  
Fabián Vera ◽  
Casee Lemons ◽  
Ming Zhong ◽  
William D. Holcomb ◽  
Randy F. LaFollette

Abstract This study compares reservoir characteristics, completion methods and production for 431 wells in 6 counties producing from the Wichita-Albany reservoir to assess major factors in production optimization and derive ultimate recovery estimates. The purpose of the study is to analyze completion design patterns across the study area by combining public and proprietary data for mining. Integrating several analyses of different nature and their respective methods like statistics, geology and engineering create a modern approach as well as a more holistic point of view when certain measurements are missing from the data set. Furthermore, multivariate statistical analysis allows modeling the impact of particular completion and stimulation parameters on the production outcome by averaging out the impact of all other variables in the system. In addition to completion type, more than 18 predictor variables were examined, including treatment parameters such as fracture fluid volume, year of completion, cumulative perforated length, proppant type, proppant amount, and county location, among others. In this sense, this contribution seems unique in unifying statistical, engineering, and geological perspectives into a singular point of view. This work also provides complementary views for well production consideration.


1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.


2020 ◽  
Vol 10 (2) ◽  
pp. 17-35
Author(s):  
Hamzah Amer Abdulameer ◽  
Dr. Sameera Hamd-Allah

As the reservoir conditions are in continuous changing during its life, well production rateand its performance will change and it needs to re-model according to the current situationsand to keep the production rate as high as possible.Well productivity is affected by changing in reservoir pressure, water cut, tubing size andwellhead pressure. For electrical submersible pump (ESP), it will also affected by numberof stages and operating frequency.In general, the production rate increases when reservoir pressure increases and/or water cutdecreases. Also the flow rate increase when tubing size increases and/or wellhead pressuredecreases. For ESP well, production rate increases when number of stages is increasedand/or pump frequency is increased.In this study, a nodal analysis software was used to design one well with natural flow andother with ESP. Reservoir, fluid and well information are taken from actual data of Mishrifformation-Nasriya oil field/ NS-5 well. Well design steps and data required in the modelwill be displayed and the optimization sensitivity keys will be applied on the model todetermine the effect of each individual parameter or when it combined with another one.


2021 ◽  
Author(s):  
Yifei Guo ◽  
Pradeepkumar Ashok ◽  
Eric van Oort ◽  
Ross Patterson ◽  
Dandan Zheng ◽  
...  

Abstract Well interference, which is commonly referred to as frac hits, has become a significant factor affecting production in fractured horizontal shale wells with the increase in infill drilling in recent years. Today, there is still no clear understanding on how frac hits affect production. This paper aims to develop a process to automatically identify the different types of frac hits and to determine the effect of stage-to-well distance and frac hit intensity on long-term parent well production. First, child well completions data and parent well pressure data are processed by a frac hit detection algorithm to automatically identify different frac hit intensities and duration within each stage. This algorithm classifies frac hits based on the magnitude of the differential pressure spikes. The frac stage to parent well distance is also calculated. Then, we compare the daily production trend before and after the frac hits to determine the severity of its influence on production. Finally, any evident correlations between the stage-to-well distance, frac hit intensity and production change are identified and investigated. This work utilizes 3 datasets covering 22 horizontal wells in the Bakken Formation and 37 horizontal wells in the Eagle Ford Shale Formation. These sets included well trajectories, child well completions data, parent well pressure data and parent well production data. The frac hit detection algorithm developed can accurately detect frac hits in the available dataset with minimal false alerts. The data analysis results show that frac hit severity (production response) and intensity (pressure response) are not only affected by the distance between parent and child wells, but also affected by the directionality of the wells. Parent wells tend to experience more frac hits from the child frac stages with smaller direction angles and shorter stage-to-parent distances. Formation stress change with time is another factor that affects frac hit intensity. Depleted wells are more susceptible to frac hits even if they are further from the child wells. Also, we observe frac hits in parent wells due to a stimulation of a child well in a different shale formation. This paper presents a novel automated frac hit detection algorithm to quickly identify different types of frac hits. This paper also presents a novel way of carrying out production analysis to determine whether frac hits in a well have positive or negative influence long-term production. Additionally, the paper introduces the concept of the stage-to-well distance as a more accurate metric for analyzing the influence of frac hits on production.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Qiujia Hu ◽  
Xianmin Zhang ◽  
Xiang Wang ◽  
Bin Fan ◽  
Huimin Jia

Production optimization of coalbed methane (CBM) is a complex constrained nonlinear programming problem. Finding an optimal decision is challenging since the coal seams are generally heterogeneous with widespread cleats, fractures, and matrix pores, and the stress sensitivities are extremely strong; the production of CBM wells needs to be adjusted dynamically within a reasonable range to fit the complex physical dynamics of CBM reservoirs to maximize profits on a long-term horizon. To address these challenges, this paper focuses on the step-down production strategy, which reduces the bottom hole pressure (BHP) step by step to expand the pressure drop radius, mitigate the formation damage, and improve CBM recovery. The mathematical model of CBM well production schedule optimization problem is formulated. The objective of the optimization model is to maximize the cumulative gas production and the variables are chosen as BHP declines of every step. BHP and its decline rate constraints are also considered in the model. Since the optimization problem is high dimensional, nonlinear with many local minima and maxima, covariance matrix adaptation evolution strategy (CMA-ES), a stochastic, derivative-free intelligent algorithm, is selected. By integrating a reservoir simulator with CMA-ES, the optimization problem can be solved successfully. Experiments including both normal wells and real featured wells are studied. Results show that CMA-ES can converge to the optimal solution efficiently. With the increase of the number of variables, the converge rate decreases rapidly. CMA-ES needs 3 or even more times number of function evaluations to converge to 100% of the optimum value comparing to 99%. The optimized schedule can better fit the heterogeneity and complex dynamic changes of CBM reservoir, resulting a higher production rate peak and a higher stable period production rate. The cumulative production under the optimized schedule can increase by 20% or even more. Moreover, the effect of the control frequency on the production schedule optimization problem is investigated. With the increases of control frequency, the converge rate decreases rapidly and the production performance increases slightly, and the optimization algorithm has a higher risk of falling into local optima. The findings of this study can help to better understanding the relationship between control strategy and CBM well production performance and provide an effective tool to determine the optimal production schedule for CBM wells.


Sign in / Sign up

Export Citation Format

Share Document