Well Completion Technology Evaluation for Oil Rim Field Development using Permanent Tracers: A Case Study from North-Komsomolskoye Field (Russian)

Author(s):  
R. R. Gashimov ◽  
V. V. Salyaev ◽  
A. M. Nuykin ◽  
G. G. Arzamastsev ◽  
A. F. Safin ◽  
...  
2017 ◽  
Author(s):  
R. R. Gashimov ◽  
V. V. Salyaev ◽  
A. M. Nuykin ◽  
G. G. Arzamastsev ◽  
A. F. Safin ◽  
...  

2021 ◽  
Author(s):  
Timur Solovyev ◽  
Nikolay Mikhaylov

Abstract The complex interbedded heterogeneous reservoirs of the Severo-Komsomolskoye field are developed by horizontal wells in which, as part of the pilot project's scope, autonomous inflow control devices (AICD) are installed to prevent early coning and gas breakthroughs in long horizontal sections and reduce sand production, which is a problem aggravated by an extremely low mechanical strength of the terrigenous deposits occurring in the Pokur formation of the Cenomanian stage in this area. The zones produced through AICDs are separated by swell packers. The issue of AICD effectiveness is discussed in the publications by Solovyev (2019), Shestov (2015), Byakov (2019) and some others. One of the methods used for monitoring horizontal sections with AICDs is production logging (PLT). However, due to the complexity of logging objectives, the use of conventional logging techniques makes the PLT unfeasible, considering the costs of preparing and carrying out the downhole operations. This paper provides some case studies of the Through-Barrier Diagnostics application, including passive spectral acoustics (spectral acoustic logging) and thermohydrodynamic modelling for the purpose of effective estimation of reservoir flows behind the liner with AICDs installed and well integrity diagnostics. As a result of the performed diagnostics, the well completion strategy was updated and optimised according to the log interpretation results, and one well intervention involving a cement squeeze with a straddle-packer assembly was carried out.


2016 ◽  
Author(s):  
Ashraf Lotfy El Gazar ◽  
Tariq Ali Al Shabibi ◽  
Lenin Loredo ◽  
Ravi Kumar ◽  
Syofvas Syofyan ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 5283 ◽  
Author(s):  
Gowida ◽  
Moussa ◽  
Elkatatny ◽  
Ali

Rock mechanical properties play a key role in the optimization process of engineering practices in the oil and gas industry so that better field development decisions can be made. Estimation of these properties is central in well placement, drilling programs, and well completion design. The elastic behavior of rocks can be studied by determining two main parameters: Young’s modulus and Poisson’s ratio. Accurate determination of the Poisson’s ratio helps to estimate the in-situ horizontal stresses and in turn, avoid many critical problems which interrupt drilling operations, such as pipe sticking and wellbore instability issues. Accurate Poisson’s ratio values can be experimentally determined using retrieved core samples under simulated in-situ downhole conditions. However, this technique is time-consuming and economically ineffective, requiring the development of a more effective technique. This study has developed a new generalized model to estimate static Poisson’s ratio values of sandstone rocks using a supervised artificial neural network (ANN). The developed ANN model uses well log data such as bulk density and sonic log as the input parameters to target static Poisson’s ratio values as outputs. Subsequently, the developed ANN model was transformed into a more practical and easier to use white-box mode using an ANN-based empirical equation. Core data (692 data points) and their corresponding petrophysical data were used to train and test the ANN model. The self-adaptive differential evolution (SADE) algorithm was used to fine-tune the parameters of the ANN model to obtain the most accurate results in terms of the highest correlation coefficient (R) and the lowest mean absolute percentage error (MAPE). The results obtained from the optimized ANN model show an excellent agreement with the laboratory measured static Poisson’s ratio, confirming the high accuracy of the developed model. A comparison of the developed ANN-based empirical correlation with the previously developed approaches demonstrates the superiority of the developed correlation in predicting static Poisson’s ratio values with the highest R and the lowest MAPE. The developed correlation performs in a manner far superior to other approaches when validated against unseen field data. The developed ANN-based mathematical model can be used as a robust tool to estimate static Poisson’s ratio without the need to run the ANN model.


2011 ◽  
Author(s):  
Carey Mills ◽  
Andrew James Marron ◽  
Wolfgang J. Leeb
Keyword(s):  

2020 ◽  
Author(s):  
T. Barling ◽  
M. Paydayesh ◽  
C. Leone ◽  
C. Belguermi ◽  
M. Francis ◽  
...  

2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.


Sign in / Sign up

Export Citation Format

Share Document