Study on the Characteristics of Well Completion Technology in Deepwater Oil and Gas Field Development

2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.

1976 ◽  
Vol 16 (1) ◽  
pp. 107
Author(s):  
M. A. Delbaere

Oilfield operators have always looked for ways of reducing the costs of oil and gas development projects and especially when investment costs were critical to project economics. Tubingless completions have evolved over the last 30 years in North America to fill the need for reduced investment costs particularly in the case of fields with either limited reserves or limited profitability.Tubingless completions basically utilise small diameter tubulars to function as both production casing and flowstring. The tubulars are cemented in the borehole, not to be removed or recovered until the field is depleted and/or the well abandoned. The technique is limited in application to those fields with no corrosion or wax or hydrate problems and with a limited requirement for reservoir stimulation and workovers. The greater the number of operations performed within the tubingless well bore the greater the risk of losing the well.The main benefits of tubingless completions are as follows:Reduction in development well completion costs.Marginally productive hydrocarbon zones can be completed and tested.Completion of individual gas zones of multi-pay wells within their own permanently segregated flowstrings at much lower capital and operating costs.The experience this far with Kincora gas field development wells indicates the tubingless completion method to be completely feasible for gas wells drilled in the Surat Basin and possibly in other areas of Australia.


2013 ◽  
Vol 734-737 ◽  
pp. 1286-1289 ◽  
Author(s):  
Lin Cong ◽  
Wen Long Li ◽  
Jing Chao Lei ◽  
Ru Bin Li

Internationally the research of low permeability oil reservoir is a difficult point in the exploration and development of oil and gas field. This thesis, based on the research methods of low permeability reservoirs at home and abroad, summaries several major problems encountered in the process of low permeability oil exploration and development under the current technical conditions as well as the corresponding, but more effective technical measures that need to be constantly improved. And that exploration and development of low permeability of the reservoir will be the main battle field for some time in the future of oil exploration and development.


2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 47 ◽  
Author(s):  
Alexey Cherepovitsyn ◽  
Dmitry Metkin ◽  
Alexander Gladilin

Currently, under the conditions of increasing depletion of hydrocarbon reserves in Russia, it is necessary to consider the resource potential of poorly-researched oil and gas objects as a factor for ensuring the sustainable development of the oil and gas complex, in the context of the concept formation of rational subsoil utilization and a circular economy. The methodology of this study is based on a clear sequence of geological and economic studies of poorly-researched oil and gas objects, including four stages, such as analysis of the raw material base, assessment of the raw material potential, determination of technological development parameters, and economic evaluation. The methods of the probabilistic estimation of oil resources of the forecasted objects with regard to geological risk are outlined. Software packages “EVA—Risk Analysis” and “EVA—Economic Evaluation of Oil and Gas Field Development Projects” were used for estimation. The result of the study is the determination of the geological and economic efficiency of the development of nine hydrocarbon objects with the determination of the order of their further geological exploration, and introduction into industrial development on the example of the poorly-researched region of the Timan-Pechora oil and gas province located in the Arctic zone.


2021 ◽  
Author(s):  
Kumar Nathan ◽  
M Arif Iskandar Ghazali ◽  
M Zahin Abdul Razak ◽  
Ismanto Marsidi ◽  
Jamari M Shah

Abstract Abandonment is considered to be the last stage in the oil gas field cycle. Oil and gas industries around the world are bounded by the necessity of creating an abandonment program which is technically sound, complied to the stringent HSE requirement and to be cost-effective. Abandonment strategies were always planned as early as during the field development plan. When there are no remaining opportunities left or no commercially viable hydrocarbon is present, the field need to be abandoned to save operating and maintenance cost. The cost associated on abandonment can often be paid to the host government periodically and can be cost recoverable once the field is ready to be abandoned. In Malaysia, some of the oil producing fields are now in the late life of production thus abandonment strategies are being studied comprehensively. The interest of this paper is to share the case study of one of a field that is in its late life of production and has wells and facilities that planned to be abandon soon. The abandonment in this field is challenging because it involves two countries, as this field is in the hydrocarbon structure that straddling two countries. Series of techno-commercial discussion were held between operators of these two countries to gain an integrated understanding of the opportunity, defining a successful outcome of the opportunity and creating an aligned plan to achieve successful abandonment campaign. Thus, this paper will discuss on technical aspects of creating a caprock model, the execution strategies of abandoning the wells and facilities and economic analysis to study whether a joint campaign between the operators from two countries yields significantly lower costs or otherwise.


Sign in / Sign up

Export Citation Format

Share Document