scholarly journals A Hybrid Artificial Intelligence Model to Predict the Elastic Behavior of Sandstone Rocks

2019 ◽  
Vol 11 (19) ◽  
pp. 5283 ◽  
Author(s):  
Gowida ◽  
Moussa ◽  
Elkatatny ◽  
Ali

Rock mechanical properties play a key role in the optimization process of engineering practices in the oil and gas industry so that better field development decisions can be made. Estimation of these properties is central in well placement, drilling programs, and well completion design. The elastic behavior of rocks can be studied by determining two main parameters: Young’s modulus and Poisson’s ratio. Accurate determination of the Poisson’s ratio helps to estimate the in-situ horizontal stresses and in turn, avoid many critical problems which interrupt drilling operations, such as pipe sticking and wellbore instability issues. Accurate Poisson’s ratio values can be experimentally determined using retrieved core samples under simulated in-situ downhole conditions. However, this technique is time-consuming and economically ineffective, requiring the development of a more effective technique. This study has developed a new generalized model to estimate static Poisson’s ratio values of sandstone rocks using a supervised artificial neural network (ANN). The developed ANN model uses well log data such as bulk density and sonic log as the input parameters to target static Poisson’s ratio values as outputs. Subsequently, the developed ANN model was transformed into a more practical and easier to use white-box mode using an ANN-based empirical equation. Core data (692 data points) and their corresponding petrophysical data were used to train and test the ANN model. The self-adaptive differential evolution (SADE) algorithm was used to fine-tune the parameters of the ANN model to obtain the most accurate results in terms of the highest correlation coefficient (R) and the lowest mean absolute percentage error (MAPE). The results obtained from the optimized ANN model show an excellent agreement with the laboratory measured static Poisson’s ratio, confirming the high accuracy of the developed model. A comparison of the developed ANN-based empirical correlation with the previously developed approaches demonstrates the superiority of the developed correlation in predicting static Poisson’s ratio values with the highest R and the lowest MAPE. The developed correlation performs in a manner far superior to other approaches when validated against unseen field data. The developed ANN-based mathematical model can be used as a robust tool to estimate static Poisson’s ratio without the need to run the ANN model.

2021 ◽  
Author(s):  
Clemens Grünsteidl ◽  
Christian Kerschbaummayr ◽  
Edgar Scherleitner ◽  
Bernhard Reitinger ◽  
Georg Watzl ◽  
...  

Abstract We demonstrate the determination of the Poisson’s ratio of steel plates during thermal processing based on contact free laser ultrasound measurements. Our method utilizes resonant elastic waves sustained by the plate, provides high amplitudes, and requires only a moderate detection bandwidth. For the analysis, the thickness of the samples does not need to be known. The trend of the measured Poisson’s ratio reveals a phase transformation in dual-phase steel samples. While previous approaches based on the measurement of the longitudinal sound velocity cannot distinguish between the ferritic and austenitic phase above 770°C, the shown method can. If the thickness of the samples is known, the method also provides both sound velocities of the material. The gained complementary information could be used to analyze phase composition of steel from low temperatures up to its melting point.


2021 ◽  
Author(s):  
Meng Meng ◽  
Luke Frash ◽  
James Carey ◽  
Wenfeng Li ◽  
Nathan Welch ◽  
...  

Abstract Accurate characterization of oilwell cement mechanical properties is a prerequisite for maintaining long-term wellbore integrity. The drawback of the most widely used technique is unable to measure the mechanical property under in situ curing environment. We developed a high pressure and high temperature vessel that can hydrate cement under downhole conditions and directly measure its elastic modulus and Poisson's ratio at any interested time point without cooling or depressurization. The equipment has been validated by using water and a reasonable bulk modulus of 2.37 GPa was captured. Neat Class G cement was hydrated in this equipment for seven days under axial stress of 40 MPa, and an in situ measurement in the elastic range shows elastic modulus of 37.3 GPa and Poisson's ratio of 0.15. After that, the specimen was taken out from the vessel, and setted up in the triaxial compression platform. Under a similar confining pressure condition, elastic modulus was 23.6 GPa and Possion's ratio was 0.26. We also measured the properties of cement with the same batch of the slurry but cured under ambient conditions. The elastic modulus was 1.63 GPa, and Poisson's ratio was 0.085. Therefore, we found that the curing condition is significant to cement mechanical property, and the traditional cooling or depressurization method could provide mechanical properties that were quite different (50% difference) from the in situ measurement.


1992 ◽  
Vol 97 (B13) ◽  
pp. 19993 ◽  
Author(s):  
D. J. White ◽  
B. Milkereit ◽  
M. H. Salisbury ◽  
J. A. Percival

2018 ◽  
Vol 10 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Ligang Zhang ◽  
Xiao Fei Fu ◽  
G. R. Liu ◽  
Shi Bin Li ◽  
Wei Li ◽  
...  

AbstractIn this work, the intensive theoretical study and laboratory tests are conducted to evaluate the craters morphology via the flat-ended indenter test, relationship of indentation hardness (HRI) and uniaxial compressive strength (UCS). Based on the stress distribution, failure process and Mohr–Coulomb failure criterion, the mathematical mechanical models are presented to express the formation conditions of “pulverized zone” and “volume break”. Moreover, a set of equations relating the depth and apex angle of craters, the ratio of indentation hardness and uniaxial compressive strength, the angle of internal friction and Poisson’s ratio are obtained. The depth, apex angle of craters and ratio of indentation hardness and uniaxial compressive strength are all affected by the angle of internal friction and Poisson’s ratio. The proposed models are also verified by experiments of rock samples which are cored from Da Qing oilfield, the percentage error between the test and calculated results for depth, apex angle of craters and the ratio of HRI and UCS are mainly in the range of –1.41%–8.92%, –5.91%–3.94% and –8.22%–13.22% respectively for siltstone, volcanic tuff, volcanic breccia, shale, sand stone and glutenite except mudstone, which demonstrates that our proposed models are robust and effective for brittle rock.


Author(s):  
Sayyad Zahid Qamar ◽  
Maaz Akhtar ◽  
Moosa S. M. Al-Kharusi

In the last ten years, a new type of advanced polymer known as swelling elastomer has been extensively used as sealing element in the oil and gas industry. These elastomers have been instrumental in various new applications such as water shutoff, zonal isolation, sidetracking, etc. Though swell packers can significantly reduce costs and increase productivity, their failure can lead to serious losses. Integrity and reliability of swelling-elastomer seals under different field conditions is therefore a major concern. Investigation of changes in material behavior over a specified swelling period is a necessary first step for performance evaluation of elastomer seals. Current study is based on experimental and numerical analysis of changes in compressive and bulk behavior of an elastomeric material due to swelling. Tests and simulations were carried out before and after various stages of swelling. Specimens were placed in saline water (0.6% and 12% concentration) at a temperature of 50°C, total swelling period being one month. Both compression and bulk tests were conducted using disc samples. A small test rig had to be designed and constructed for determination of bulk modulus. Young’s modulus (under compression) and bulk modulus were determined for specimens subjected to different swelling periods. Shear modulus and Poisson’s ratio were calculated using isotropic relations. Experiments were also simulated using the commercial finite element software ABAQUS. Different hyperelastic material models were examined. As Ogden model with second strain energy potential gave the closest results, it has been used for all simulations. The elastomer was a fast-swell type. There were drastic changes in material properties within one day of swelling, under both low and high salinity water. Values of elastic and shear modulus dropped by more than 90% in the first few days, and then remained almost constant during the rest of the one-month period. Poisson’s ratio, as expected, showed a mirror behavior of a sharp increase in the first few days. Bulk modulus exhibited a fluctuating pattern; rapid initial decrease, then a slightly slower increase, followed by a much slower decrease. Salinity shows some notable effect in the first 5 or 6 days, but has almost no influence in the later days. Very interestingly, Poisson’s ratio approaches the limiting value of 0.5 within the first 10 days of swelling, justifying the assumption of incompressibility used in most analytical and numerical models. In general, simulations results are in good agreement with experimental ones.


Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. E51-E57 ◽  
Author(s):  
Jack P. Dvorkin

Laboratory data supported by granular-medium and inclusion theories indicate that Poisson’s ratio in gas-saturated sand lies within a range of 0–0.25, with typical values of approximately 0.15. However, some well log measurements, especially in slow gas formations, persistently produce a Poisson’s ratio as large as 0.3. If this measurement is not caused by poor-quality data, three in situ situations — patchy saturation, subresolution thin layering, and elastic anisotropy — provide a plausible explanation. In the patchy saturation situation, the well data must be corrected to produce realistic synthetic seismic traces. In the second and third cases, the effect observed in a well is likely to persist at the seismic scale.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2739
Author(s):  
Shahram Yalameha ◽  
Zahra Nourbakhsh ◽  
Ali Ramazani ◽  
Daryoosh Vashaee

Using first-principles calculations, we predict highly stable cubic bialkali bismuthides Cs(Na, K)2Bi with several technologically important mechanical and anisotropic elastic properties. We investigate the mechanical and anisotropic elastic properties under hydrostatic tension and compression. At zero pressure, CsK2Bi is characterized by elastic anisotropy with maximum and minimum stiffness along the directions of [111] and [100], respectively. Unlike CsK2Bi, CsNa2Bi exhibits almost isotropic elastic behavior at zero pressure. We found that hydrostatic tension and compression change the isotropic and anisotropic mechanical responses of these compounds. Moreover, the auxetic nature of the CsK2Bi compound is tunable under pressure. This compound transforms into a material with a positive Poisson’s ratio under hydrostatic compression, while it holds a large negative Poisson’s ratio of about −0.45 along the [111] direction under hydrostatic tension. An auxetic nature is not observed in CsNa2Bi, and Poisson’s ratio shows completely isotropic behavior under hydrostatic compression. A directional elastic wave velocity analysis shows that hydrostatic pressure effectively changes the propagation pattern of the elastic waves of both compounds and switches the directions of propagation. Cohesive energy, phonon dispersion, and Born–Huang conditions show that these compounds are thermodynamically, mechanically, and dynamically stable, confirming the practical feasibility of their synthesis. The identified mechanisms for controlling the auxetic and anisotropic elastic behavior of these compounds offer a vital feature for designing and developing high-performance nanoscale electromechanical devices.


2003 ◽  
Vol 766 ◽  
Author(s):  
B. N. Lucas ◽  
J. C. Hay ◽  
W. C. Oliver

AbstractUsing a new multi-dimensional contact mechanics system, it was recently shown that the experimentally measured tangential to normal stiffness ratio of a contact can be described as a function of the bulk Poisson's ratio of the material as predicted by Mindlin [1-3]. This system has been utilized to measure the normal and tangential elastic contact stiffness of a series of porous low-k films, with increasing starting porogen content. These results indicate a transition from a material-controlled elastic behavior to a structure-controlled elastic behavior as the porosity of the film is increased. These structural effects and their potential influence on the mechanical response to forces imposed on integrated circuits are discussed. The experimental details and apparatus are introduced and described.


Sign in / Sign up

Export Citation Format

Share Document