Downhole Gauge Data Analysis of Open-Hole Gravel Packing Treatments: Methodology and Examples

Author(s):  
A. Kumar ◽  
M. Beldongar ◽  
D. Agee ◽  
B. R. Gadiyar ◽  
M. Parlar
2018 ◽  
Vol 33 (04) ◽  
pp. 324-334 ◽  
Author(s):  
Amrendra Kumar ◽  
Maye Beldongar ◽  
Daniel Agee ◽  
Bala R. Gadiyar ◽  
Mehmet Parlar

2019 ◽  
Author(s):  
Carlos Alberto Pedroso ◽  
Barbara Cavalcante ◽  
Marcelo Marsili ◽  
Marcelo Santos ◽  
Paulo S. V. Rocha

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fei Xu ◽  
Shengtian Zhou ◽  
Chong Zhang ◽  
Yi Yu ◽  
Zhao Dong

Shunted screen gravel packing is a kind of technology which is difficult to complete gravel packing with the conventional method in low fracture pressure formation and long wellbore length condition. According to the characteristics of LS 17-2 deepwater gas field, the shunted screen packing tool was designed and the gravel packing process and packing mechanism were analyzed. The variation law of the flow friction, flow rate distribution in multichannel, and other parameters of the shunted screen gravel packing were analyzed and calculated. The friction calculation model of different stages of gravel packing was established. A gravel packing simulation software was developed to simulate the friction in different stages of shunted screen gravel packing. The parameters such as sand-dune ratio, pumping sand amount, packing length, and packing time in the process of packing were also calculated. In deepwater horizontal well gravel packing, the results show that the friction ratio of the string is the largest in the stage of injection and α-wave packing. While the friction increases rapidly in the stage of β-wave packing because the carrier fluid needs to flow through the long and narrow washpipe/screen annulus. Particularly when the β-wave packing is near the beginning of the open hole, the packing pressure reaches the maximum. The calculated results are in good agreement with the measured results of the downhole pressure gauge. The model and software can provide technical support for the prediction and optimization of gravel packing parameters in the future.


2021 ◽  
Author(s):  
Chih-Cheng Lin ◽  
Andrew G. Tallin ◽  
Xueyong Guan ◽  
Jiten D. Kaura ◽  
Sasha F. Luces ◽  
...  

Abstract One of the major technical challenges to this project was placing horizontal open hole gravel packs (HzOHGP) within the narrow pore pressure to frac-gradient (PPFG) margin in the target reservoirs. This paper addresses the steps taken to overcome this challenge. To maximize the use of the narrow PPFG margin, the project combined a managed pressure drilling (MPD) system with low gravel placement pump rates made possible by an ultra-light-weight proppant (ULWP).  Of the MPD systems available, the Controlled Mud Level (CML) system was selected over the Surface Back Pressure (SBP) system for several reasons. It enabled conventional gravel pack pumping operations and equipment and it accommodated the brine weight needed to inhibit the shales. A series of lab tests showed that the completion fluid density required to inhibit the reservoir shale reactivity was only possible using CML. An overall evaluation of CML showed that it was most suitable and offered the greatest flexibility for the gravel pack job design. The special ceramic ULWP had to be qualified and tested.  The qualification testing ranged from standard API and compatibility tests to full scale flow loop testing. The flow loop tests were needed to measure the ULWP transport velocity for the target wellbore geometry. Understanding the transport velocity is critical for gravel pack design and job execution planning. Once MPD and ceramic ULWP were selected, the gravel pack placement operations were simulated to demonstrate that their features increased the likelihood of successfully gravel packing in the target reservoirs.  Small PPFG margins decrease the probability of success of placing a HzOHGP.  In the target formations, the pressure margin is insufficient to safely execute HzOHGP conventionally; instead, the project combined MPD and the low pump rates facilitated by using ULWP to control circulating pressures to stay inside the narrow margin and place the gravel packs. The integration of CML and ULWP into in a gravel pack operation to control circulating pressures has never been done. The concept and its successful field implementation are industry firsts.


Sign in / Sign up

Export Citation Format

Share Document