A Casing Damage Prediction Method Based on Principal Component Analysis and Gradient Boosting Decision Tree Algorithm

Author(s):  
Mengxin Song ◽  
Xiangguang Zhou
2006 ◽  
Vol 1 (1) ◽  
Author(s):  
K. Katayama ◽  
K. Kimijima ◽  
O. Yamanaka ◽  
A. Nagaiwa ◽  
Y. Ono

This paper proposes a method of stormwater inflow prediction using radar rainfall data as the input of the prediction model constructed by system identification. The aim of the proposal is to construct a compact system by reducing the dimension of the input data. In this paper, Principal Component Analysis (PCA), which is widely used as a statistical method for data analysis and compression, is applied to pre-processing radar rainfall data. Then we evaluate the proposed method using the radar rainfall data and the inflow data acquired in a certain combined sewer system. This study reveals that a few principal components of radar rainfall data can be appropriate as the input variables to storm water inflow prediction model. Consequently, we have established a procedure for the stormwater prediction method using a few principal components of radar rainfall data.


2009 ◽  
Vol 147-149 ◽  
pp. 588-593 ◽  
Author(s):  
Marcin Derlatka ◽  
Jolanta Pauk

In the paper the procedure of processing biomechanical data has been proposed. It consists of selecting proper noiseless data, preprocessing data by means of model’s identification and Kernel Principal Component Analysis and next classification using decision tree. The obtained results of classification into groups (normal and two selected pathology of gait: Spina Bifida and Cerebral Palsy) were very good.


2021 ◽  
Author(s):  
Anwar Yahya Ebrahim ◽  
Hoshang Kolivand

The authentication of writers, handwritten autograph is widely realized throughout the world, the thorough check of the autograph is important before going to the outcome about the signer. The Arabic autograph has unique characteristics; it includes lines, and overlapping. It will be more difficult to realize higher achievement accuracy. This project attention the above difficulty by achieved selected best characteristics of Arabic autograph authentication, characterized by the number of attributes representing for each autograph. Where the objective is to differentiate if an obtain autograph is genuine, or a forgery. The planned method is based on Discrete Cosine Transform (DCT) to extract feature, then Spars Principal Component Analysis (SPCA) to selection significant attributes for Arabic autograph handwritten recognition to aid the authentication step. Finally, decision tree classifier was achieved for signature authentication. The suggested method DCT with SPCA achieves good outcomes for Arabic autograph dataset when we have verified on various techniques.


Author(s):  
Ade Jamal ◽  
Annisa Handayani ◽  
Ali Akbar Septiandri ◽  
Endang Ripmiatin ◽  
Yunus Effendi

Breast cancer is the most important cause of death among women. A prediction of breast cancer in early stage provides a greater possibility of its cure. It needs a breast cancer prediction tool that can classify a breast tumor whether it was a harmful malignant tumor or un-harmful benign tumor. In this paper, two algorithms of machine learning, namely Support Vector Machine and Extreme Gradient Boosting technique will be compared for classification purpose. Prior to the classification, the number of data attribute will be reduced from the raw data by extracting features using Principal Component Analysis. A clustering method, namely K-Means is also used for dimensionality reduction besides the Principal Component Analysis. This paper will present a comparison among four models based on two dimensionality reduction methods combined with two classifiers which applied on Wisconsin Breast Cancer Dataset. The comparison will be measured by using accuracy, sensitivity and specificity metrics evaluated from the confusion matrices. The experimental results have indicated that the K-Means method, which is not usually used for dimensionality reduction can perform well compared to the popular Principal Component Analysis.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 32423-32433 ◽  
Author(s):  
Bing Zhang ◽  
Jiadong Ren ◽  
Yongqiang Cheng ◽  
Bing Wang ◽  
Zhiyao Wei

2021 ◽  
Author(s):  
Zhang ye ◽  
Tang Shoufeng ◽  
Shi Ke

Abstract To provide an effective risk assessment of water inrush for coal mine safety production, a BP neural network prediction method for water inrush based on principal component analysis and deep confidence network optimization was proposed. Because deep belief network (DBN) is disadvantaged by a long training time when establishing a high-dimensional data classification model, the principal component analysis (PCA) method is used to reduce the dimensionality of many factors affecting the water inrush of the coal seam floor, thus reducing the number of variables of the research object, redundancy and the difficulty of feature extraction and shortening the training time of the model. Then, a DBN network was used to extract secondary features from the processed nonlinear data, and a more abstract high-level representation was formed by combining low-level features to find the expression of the nonlinear relationship between the characteristics of water inbursts. Finally, a prediction model was established to predict the water inrush in coal mines. The superiority of this method was verified by comparing the prediction of the actual working face with the actual situation in typical mining areas of North China.


Sign in / Sign up

Export Citation Format

Share Document