Innovative Green Solution for Gas Condensate Blockage Removal

2019 ◽  
Author(s):  
Mohammed Al Hamad ◽  
Ezdeen Ibrahim ◽  
Wael Abdallah
2012 ◽  
Vol 9 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Mohammadi-Khanaposhtani ◽  
Alireza Bahramian ◽  
Peyman Pourafshary ◽  
Babak Aminshahidy ◽  
Babak Fazelabdolabadi

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6551
Author(s):  
Benedicta Bilotu Onoabhagbe ◽  
Paul Russell ◽  
Johnson Ugwu ◽  
Sina Rezaei Gomari

Prediction of the timing and location of condensate build-up around the wellbore in gas condensate reservoirs is essential for the selection of appropriate methods for condensate recovery from these challenging reservoirs. The present work focuses on the use of a novel phase change tracking approach in monitoring the formation of condensate blockage in a gas condensate reservoir. The procedure entails the simulation of tight, low and high permeability reservoirs using global and local grid analysis in determining the size and timing of three common regions (Region 1, near wellbore; Region 2, condensate build-up; and Region 3, single-phase gas) associated with single and two-phase gas and immobile and mobile gas condensate. The results show that permeability has a significant influence on the occurrence of the three regions around the well, which in turn affects the productivity of the gas condensate reservoir studied. Predictions of the timing and location of condensate in reservoirs with different permeability levels of 1 mD to 100 mD indicate that local damage enhances condensate formation by 60% and shortens the duration of the immobile phase by 45%. Meanwhile, the global change in permeability increases condensate formation by 80% and reduces the presence of the immobile phase by 60%. Finally, this predictive approach can help in mitigating condensate blockage around the wellbore during production.


2019 ◽  
Vol 62 ◽  
pp. 214-223 ◽  
Author(s):  
Seyed-Ahmad Hoseinpour ◽  
Mehdi Madhi ◽  
Hamidreza Norouzi ◽  
Bahram Soltani Soulgani ◽  
Amir H. Mohammadi

2016 ◽  
Vol 33 ◽  
pp. 634-643 ◽  
Author(s):  
Alireza Rahimzadeh ◽  
Mohammad Bazargan ◽  
Rouhollah Darvishi ◽  
Amir H. Mohammadi

2017 ◽  
Vol 3 (3) ◽  
pp. 9
Author(s):  
Karanthakarn Mekmok ◽  
Jirawat Chewaroungroaj

Gas condensate reservoirs have been challenging many researchers in petroleum industry for decades because of their complexities in flow behavior. After dew point pressure is reached, gas condensate will drop liquid out and increase liquid saturation near wellbore vicinity called condensate banking or condensate blockage. Hydraulic fracturing in horizontal direction has been proved to be a reliable method to mitigate condensate blockage and increase productivity of gas condensate well by means of pressure redistribution in the near wellbore vicinity. In this paper the parameters of dimensionless fracture conductivity and Stimulated Reservoir Volume (SRV) designs of lean and rich condensate compositions are studied. Well productivity and saturation profile of each design had been observed. The results from this study indicate that the higher dimensionless fracture conductivity gives the higher well productivity in every studied parameter in lean condensate composition. However, in rich condensate composition shows different trend of results because it has higher heavy ends (C7+) that drop into liquid easier once pressure falls below dew point pressure. The maximum number of fracture and fracture permeability can be recognized in the study of rich condensate. In the study of SRV indicates that number of fracture is superior to fracture width in both gas and condensate productivity. Moreover, performing hydraulic fracturing can decrease pressure drawdown, production time and liquid dropout which leads to the mitigation of condensate banking near wellbore that can be recognized in the study of condensate saturation profile.


2020 ◽  
Vol 17 (6) ◽  
pp. 1655-1668 ◽  
Author(s):  
Iman Nowrouzi ◽  
Amir H. Mohammadi ◽  
Abbas Khaksar Manshad

AbstractThe pressure drop during production in the near-wellbore zone of gas condensate reservoirs causes condensate formation in this area. Condensate blockage in this area causes an additional pressure drop that weakens the effective parameters of production, such as permeability. Reservoir rock wettability alteration to gas-wet through chemical treatment is one of the solutions to produce these condensates and eliminate condensate blockage in the area. In this study, an anionic fluorinated surfactant was synthesized and used for chemical treatment and carbonate rock wettability alteration. The synthesized surfactant was characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then, using surface tension tests, its critical micelle concentration (CMC) was determined. Contact angle experiments on chemically treated sections with surfactant solutions and spontaneous imbibition were performed to investigate the wettability alteration. Surfactant adsorption on porous media was calculated using flooding. Finally, the surfactant foamability was investigated using a Ross–Miles foam generator. According to the results, the synthesized surfactant has suitable thermal stability for use in gas condensate reservoirs. A CMC of 3500 ppm was obtained for the surfactant based on the surface tension experiments. Contact angle experiments show the ability of the surfactant to chemical treatment and wettability alteration of carbonate rocks to gas-wet so that at the constant concentration of CMC and at 373 K, the contact angles at treatment times of 30, 60, 120 and 240 min were obtained 87.94°, 93.50°, 99.79° and 106.03°, respectively. However, this ability varies at different surfactant concentrations and temperatures. The foamability test also shows the suitable stability of the foam generated by the surfactant, and a foam half-life time of 13 min was obtained for the surfactant at CMC.


Sign in / Sign up

Export Citation Format

Share Document