Condensate blockage alleviation around gas-condensate producing wells using wettability alteration

2019 ◽  
Vol 62 ◽  
pp. 214-223 ◽  
Author(s):  
Seyed-Ahmad Hoseinpour ◽  
Mehdi Madhi ◽  
Hamidreza Norouzi ◽  
Bahram Soltani Soulgani ◽  
Amir H. Mohammadi
2020 ◽  
Vol 17 (6) ◽  
pp. 1655-1668 ◽  
Author(s):  
Iman Nowrouzi ◽  
Amir H. Mohammadi ◽  
Abbas Khaksar Manshad

AbstractThe pressure drop during production in the near-wellbore zone of gas condensate reservoirs causes condensate formation in this area. Condensate blockage in this area causes an additional pressure drop that weakens the effective parameters of production, such as permeability. Reservoir rock wettability alteration to gas-wet through chemical treatment is one of the solutions to produce these condensates and eliminate condensate blockage in the area. In this study, an anionic fluorinated surfactant was synthesized and used for chemical treatment and carbonate rock wettability alteration. The synthesized surfactant was characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then, using surface tension tests, its critical micelle concentration (CMC) was determined. Contact angle experiments on chemically treated sections with surfactant solutions and spontaneous imbibition were performed to investigate the wettability alteration. Surfactant adsorption on porous media was calculated using flooding. Finally, the surfactant foamability was investigated using a Ross–Miles foam generator. According to the results, the synthesized surfactant has suitable thermal stability for use in gas condensate reservoirs. A CMC of 3500 ppm was obtained for the surfactant based on the surface tension experiments. Contact angle experiments show the ability of the surfactant to chemical treatment and wettability alteration of carbonate rocks to gas-wet so that at the constant concentration of CMC and at 373 K, the contact angles at treatment times of 30, 60, 120 and 240 min were obtained 87.94°, 93.50°, 99.79° and 106.03°, respectively. However, this ability varies at different surfactant concentrations and temperatures. The foamability test also shows the suitable stability of the foam generated by the surfactant, and a foam half-life time of 13 min was obtained for the surfactant at CMC.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4673
Author(s):  
Paula K. P. Reis ◽  
Marcio S. Carvalho

Liquid banking in the near wellbore region can lessen significantly the production from gas reservoirs. As reservoir rocks commonly consist of liquid-wet porous media, they are prone to liquid trapping following well liquid invasion and/or condensate dropout in gas-condensate systems. For this reason, wettability alteration from liquid to gas-wet has been investigated in the past two decades as a permanent gas flow enhancement solution. Numerous experiments suggest flow improvement for immiscible gas-liquid flow in wettability altered cores. However, due to experimental limitations, few studies evaluate the method’s performance for condensing flows, typical of gas-condensate reservoirs. In this context, we present a compositional pore-network model for gas-condensate flow under variable wetting conditions. Different condensate modes and flow patterns based on experimental observations were implemented in the model so that the effects of wettability on condensing flow were represented. Flow analyses under several thermodynamic conditions and flow rates in a sandstone based network were conducted to determine the parameters affecting condensate blockage mitigation by wettability alteration. Relative permeability curves and impacts factors were calculated for gas flowing velocities between 7.5 and 150 m/day, contact angles between 45° and 135°, and condensate saturations up to 35%. Significantly different relative permeability curves were obtained for contrasting wettability media and impact factors below one were found at low flowing velocities in preferentially gas-wet cases. Results exhibited similar trends observed in coreflooding experiments and windows of optimal flow enhancement through wettability alteration were identified.


2012 ◽  
Vol 9 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Mohammadi-Khanaposhtani ◽  
Alireza Bahramian ◽  
Peyman Pourafshary ◽  
Babak Aminshahidy ◽  
Babak Fazelabdolabadi

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6551
Author(s):  
Benedicta Bilotu Onoabhagbe ◽  
Paul Russell ◽  
Johnson Ugwu ◽  
Sina Rezaei Gomari

Prediction of the timing and location of condensate build-up around the wellbore in gas condensate reservoirs is essential for the selection of appropriate methods for condensate recovery from these challenging reservoirs. The present work focuses on the use of a novel phase change tracking approach in monitoring the formation of condensate blockage in a gas condensate reservoir. The procedure entails the simulation of tight, low and high permeability reservoirs using global and local grid analysis in determining the size and timing of three common regions (Region 1, near wellbore; Region 2, condensate build-up; and Region 3, single-phase gas) associated with single and two-phase gas and immobile and mobile gas condensate. The results show that permeability has a significant influence on the occurrence of the three regions around the well, which in turn affects the productivity of the gas condensate reservoir studied. Predictions of the timing and location of condensate in reservoirs with different permeability levels of 1 mD to 100 mD indicate that local damage enhances condensate formation by 60% and shortens the duration of the immobile phase by 45%. Meanwhile, the global change in permeability increases condensate formation by 80% and reduces the presence of the immobile phase by 60%. Finally, this predictive approach can help in mitigating condensate blockage around the wellbore during production.


2019 ◽  
Author(s):  
Mohammed Al Hamad ◽  
Ezdeen Ibrahim ◽  
Wael Abdallah

2000 ◽  
Vol 3 (02) ◽  
pp. 139-149 ◽  
Author(s):  
Li Kewen ◽  
Firoozabadi Abbas

Summary In a recent theoretical study, Li and Firoozabadi [Li, K. and Firoozabadi, A.: "Phenomenological Modeling of Critical-Condensate Saturation and Relative Permeabilities in Gas-Condensate Systems," paper SPE 56014 available from SPE, Richardson, Texas (2000)] showed that if the wettability of porous media can be altered from preferential liquid-wetting to preferential gas-wetting, then gas-well deliverability in gas-condensate reservoirs can be increased. In this article, we present the results that the wettability of porous media may indeed be altered from preferential liquid-wetting to preferential gas-wetting. In the petroleum literature, it is often assumed that the contact angle through liquid-phase ? is equal to 0° for gas-liquid systems in rocks. As this work will show, while ? is always small, it may not always be zero. In laboratory experiments, we altered the wettability of porous media to preferential gas-wetting by using two chemicals, FC754 and FC722. Results show that in the glass capillary tube ? can be altered from about 50 to 90° and from 0 to 60° by FC754 for water-air and normal decane-air systems, respectively. While untreated Berea saturated with air has a 60% imbibition of water, its imbibition of water after chemical treatment is almost zero and its imbibition of normal decane is substantially reduced. FC722 has a more pronounced effect on the wettability alteration to preferential gas-wetting. In a glass capillary tube ? is altered from 50 to 120° and from 0 to 60° for water-air and normal decane-air systems, respectively. Similarly, because of wettability alteration with FC722, there is no imbibition of either oil or water in both Berea and chalk samples with or without initial brine saturation. Entry capillary pressure measurements in Berea and chalk give a clear demonstration that the wettability of porous media can be permanently altered to preferential gas-wetting. Introduction In a theoretical work,1 we have modeled gas and liquid relative permeabilities for gas-condensate systems in a simple network. The results imply that when one alters the wettability of porous media from strongly non-gas-wetting to preferential gas-wetting or intermediate gas-wetting, there may be a substantial increase in gas-well deliverability. The increase in gas-well deliverability of gas-condensate reservoirs is our main motivation for altering the wettability of porous media to preferential gas-wetting. Certain gas-condensate reservoirs experience a sharp drop in gas-well deliverability when the reservoir pressure drops below the dewpoint.2–4 Examples include many rich gas-condensate reservoirs that have a permeability of less than 100 md. In these reservoirs, it seems that the viscous forces alone cannot enhance gas-well deliverability. One may suggest removing liquid around the wellbore via phase-behavior effects through CO2 and propane injection. Both have been tried in the field with limited success; the effect of fluid injection around the wellbore for the removal of the condensate liquid is temporary. Wettability alteration can be a very important method for the enhancement of gas-well deliverability. If one can alter the wettability of the wellbore region to intermediate gas-wetting, gas may flow efficiently in porous media. As early as 1941, Buckley and Leverett5 recognized the importance of wettability on water flooding performance. Later, many authors studied the effect of wettability on capillary pressure, relative permeability, initial water saturation, residual oil saturation, oil recovery, electrical properties of reservoir rocks, reserves, and well stimulation.6–16 reported that it might be possible to improve oil displacement efficiency by wettability adjustment during water flooding. In 1967, Froning and Leach8 reported a field test in Clearfork and Gallup reservoirs for improving oil recovery by wettability alteration. Kamath9 then reviewed wettability detergent flooding. He noted that it was difficult to draw a definite conclusion regarding the success of detergent floods from the data available in the literature. Penny et al.12 presented a technique to improve well stimulation by changing the wettability for gas-water-rock systems. They added a surfactant in the fracturing fluid. This yielded impressive results; the production following cleanup after fracturing in gas wells generally was 2 to 3 times greater than field averages or offset wells treated with conventional techniques. Penny et al.12 believed that increased production was due to wettability alteration. However, they did not demonstrate that wettability had been altered. Recently, Wardlaw and McKellar17 reported that only 11% pore volume (PV) water imbibed into the Devonian dolomite samples with bitumen. The water imbibition test was conducted vertically in a dry core (saturated with air). Based on the imbibition experiments, they pointed out that many gas reservoirs in the western Alberta foothills of the Rocky Mountains were partially dehydrated and their wettability altered to a weakly water-wet or strongly oil-wet condition due to bitumen deposits on the pores. The water imbibition results of Wardlaw and McKellar17 demonstrated that the inappropriate hypothesis for wetting properties of gas reservoirs might lead to underestimation of hydrocarbon reserves.


Sign in / Sign up

Export Citation Format

Share Document