Healing Total Losses and Establishing Well Integrity with Engineered Fiber-Based Lost Circulation Control Spacer During Primary Cementing in UAE Offshore

2019 ◽  
Author(s):  
Adelson Barros ◽  
Ahmed Rashed Alaleeli ◽  
Ahmedagha Hamidzada ◽  
Azza El Hassan ◽  
Alexandre Melo ◽  
...  
2017 ◽  
Author(s):  
Xiangyu Liu ◽  
Katherine Aughenbaugh ◽  
Hanna Lee ◽  
Sriramya Nair ◽  
Eric van Oort

2021 ◽  
Author(s):  
M. Shamlooh ◽  
A. Hamza ◽  
I. Hussein ◽  
M. Nasser ◽  
S. Salehi

2021 ◽  
Author(s):  
Amanmammet Bugrayev ◽  
Svetlana Nafikova ◽  
Salim Taoutaou ◽  
Guvanch Gurbanov ◽  
Maksatmyrat Hanov ◽  
...  

Abstract Lost circulation in depleted sands during a primary cementing job is a serious problem in Turkmenistan. The uncertainty in formation pressure across these sands increases the risk of losses during drilling and cementing, which results in remedial operations and nonproductive time. The need to find a fit-for-purpose lost circulation solution becomes even more critical in an environment with narrow pore pressure-to-fracture gradient, where each cement job with losses compromises the downhole well integrity. An engineered lost circulation solution using innovative materials in the cement slurry was carefully assessed and qualified in the laboratory for each case to optimize the formulation. The lost circulation control treatment combines specialized engineered fibers with sized bridging materials to increase the effectiveness of treatment, formulated and added to the cement slurries based on the slurry solids volume fraction (SVF). Cement slurries with low SVF were treated with higher concentrations of the product and slurries with high SVF used lower concentrations. More than 50 jobs were performed with cement slurries designed at various densities and SVF up to 58% and using this advanced lost circulation material (LCM) to mitigate losses during cementing. Field experience showed positive results, where the differential pressure up to 2,800 psi was expected during cementing operation. A local database, generated based on the design and development work performed, enabled improved decision-making for selection and LCM application requirements for subsequent jobs and development of a lost circulation strategy. The mitigation plan was put in place against losses in critical sections and depleted sand formations in Turkmenistan. It assisted in meeting the cement coverage requirements on numerous occasions, improving overall the integrity of the wells and thus, was considered to be a success. This paper provides insight of this advanced LCM, its application in cement slurries, the logic behind the developed loss circulation strategy, and the high success rate of its implementation. Three case histories are presented to demonstrate the strategy and results.


2021 ◽  
Author(s):  
Emmanuel Therond ◽  
Yaseen Najwani ◽  
Mohamed Al Alawi ◽  
Muneer Hamood Al Noumani ◽  
Yaqdhan Khalfan Al Rawahi ◽  
...  

Abstract The Khazzan and Ghazeer gas fields in the Sultanate of Oman are projected to deliver production of gas and condensate for decades to come. Over the life of the project, around 300 wells will be drilled, with a target drilling and completion time of 42 days for a vertical well. The high intensity of the well construction requires a standardized and robust approach for well cementing to deliver high-quality well integrity and zonal isolation. The wells are designed with a surface casing, an intermediate casing, a production casing or production liner, and a cemented completion. Most sections are challenging in terms of zonal isolation. The surface casing is set across a shallow-water carbonate formation, prone to lost circulation and shallow water flow. The production casing or production liner is set across fractured limestones and gas-bearing zones that can cause A- and B-Annulus sustained casing pressure if not properly isolated. The cemented completion is set across a high-temperature sandstone reservoir with depletion and the cement sheath is subjected to very high pressure and temperature variations during the fracturing treatment. A standardized cement blend is implemented for the entire field from the top section down to the reservoir. This blend works over a wide slurry density and temperature range, has expanding properties, and can sustain the high temperature of the reservoir section. For all wells, the shallow-water flow zone on the surface casing is isolated by a conventional 11.9 ppg lightweight lead slurry, capped with a reactive sodium silicate gel, and a 15.8 ppg cement slurry pumped through a system of one-inch flexible pipes inserted in the casing/conductor annulus. The long intermediate casing is cemented in one stage using a conventional lightweight slurry containing a high-performance lost circulation material to seal the carbonate microfractures. The excess cement volume is based on loss volume calculated from a lift pressure analysis. The cemented completion uses a conventional 13.7 - 14.5 ppg cement slurry; the cement is pre-stressed in situ with an expanding agent to prevent cement failure when fracturing the tight sandstone reservoir with high-pressure treatment. Zonal isolation success in a high-intensity drilling environment is assessed through key performance zonal isolation indicators. Short-term zonal isolation indicators are systematically used to evaluate cement barrier placement before proceeding with installing the next casing string. Long-term zonal isolation indicators are used to evaluate well integrity over the life of the field. A-Annulus and B-Annulus well pressures are monitored through a network of sensors transmitting data in real time. Since the standardization of cementing practices in the Khazzan field short-term job objectives met have increased from 76% to 92 % and the wells with sustained casing pressure have decreased from 22 % to 0%.


2021 ◽  
Author(s):  
Allam Putra Rachimillah ◽  
Cinto Azwar ◽  
Ambuj Johri ◽  
Ahmed Osman ◽  
Eric Tanoto

Abstract Cementing is one of the sequences in the drilling operations to isolate different geological zones and provide integrity for the life of the well. As compared with oil and gas wells, geothermal wells have unique challenges for cementing operations. Robust cementing design and appropriate best practices during the cementing operations are needed to achieve cementing objectives in geothermal wells. Primary cementing in geothermal wells generally relies on a few conventional methods: long string, liner-tieback, and two-stage methods. Each has challenges for primary cementing that will be analyzed, compared, and discussed in detail. Geothermal wells pose challenges of low fracture gradients and massive lost circulation due to numerous fractures, which often lead to a need for remedial cementing jobs such as squeeze cementing and lost circulation plugs. Special considerations for remedial cementing in geothermal wells are also discussed here. Primary cement design is critical to ensure long-term integrity of a geothermal well. The cement sheath must be able to withstand pressure and temperature cycles when steam is produced and resist corrosive reservoir fluids due to the presence of H2S and CO2. Any fluid trapped within the casing-casing annulus poses a risk of casing collapse due to expansion under high temperatures encountered during the production phase. With the high heating rate of the geothermal well, temperature prediction plays an important part in cement design. Free fluid sensitivity test and centralizer selection also play an important role in avoiding mud channeling as well as preventing the development of fluid pockets. Analysis and comparison of every method is described in detail to enable readers to choose the best approach. Massive lost circulation is very common in surface and intermediate sections of geothermal wells. On numerous occasions, treatment with conventional lost-circulation material (LCM) was unable to cure the losses, resulting in the placement of multiple cement plugs. An improved lost circulation plug design and execution method are introduced to control massive losses in a geothermal environment. In addition, the paper will present operational best practices and lessons learned from the authors’ experience with cementing in geothermal wells in Indonesia. Geothermal wells can be constructed in different ways by different operators. In light of this, an analysis of different cementing approaches has been conducted to ensure robust cement design and a fit-for-purpose cementing method. This paper will discuss the cementing design, equipment, recommendations, and best available practices for excellence in operational execution to achieve optimal long-life zonal isolation for a geothermal well.


2016 ◽  
Vol 35 ◽  
pp. 836-850 ◽  
Author(s):  
Omid Razavi ◽  
Ali Karimi Vajargah ◽  
Eric van Oort ◽  
Munir Aldin ◽  
Sudarshan Govindarajan

2019 ◽  
Author(s):  
Tatiana Salmina ◽  
Svetlana Shabzova ◽  
Maxim Koval ◽  
Sergey Bogatkin

2019 ◽  
Author(s):  
Aleksey Fomenkov ◽  
Ilya Pinigin ◽  
Maxim Mikliayev ◽  
Artem Fedyanin

Sign in / Sign up

Export Citation Format

Share Document