Use Of Fiber Materials to Mitigate Lost Circulation During Cementing Operations in Turkmenistan

2021 ◽  
Author(s):  
Amanmammet Bugrayev ◽  
Svetlana Nafikova ◽  
Salim Taoutaou ◽  
Guvanch Gurbanov ◽  
Maksatmyrat Hanov ◽  
...  

Abstract Lost circulation in depleted sands during a primary cementing job is a serious problem in Turkmenistan. The uncertainty in formation pressure across these sands increases the risk of losses during drilling and cementing, which results in remedial operations and nonproductive time. The need to find a fit-for-purpose lost circulation solution becomes even more critical in an environment with narrow pore pressure-to-fracture gradient, where each cement job with losses compromises the downhole well integrity. An engineered lost circulation solution using innovative materials in the cement slurry was carefully assessed and qualified in the laboratory for each case to optimize the formulation. The lost circulation control treatment combines specialized engineered fibers with sized bridging materials to increase the effectiveness of treatment, formulated and added to the cement slurries based on the slurry solids volume fraction (SVF). Cement slurries with low SVF were treated with higher concentrations of the product and slurries with high SVF used lower concentrations. More than 50 jobs were performed with cement slurries designed at various densities and SVF up to 58% and using this advanced lost circulation material (LCM) to mitigate losses during cementing. Field experience showed positive results, where the differential pressure up to 2,800 psi was expected during cementing operation. A local database, generated based on the design and development work performed, enabled improved decision-making for selection and LCM application requirements for subsequent jobs and development of a lost circulation strategy. The mitigation plan was put in place against losses in critical sections and depleted sand formations in Turkmenistan. It assisted in meeting the cement coverage requirements on numerous occasions, improving overall the integrity of the wells and thus, was considered to be a success. This paper provides insight of this advanced LCM, its application in cement slurries, the logic behind the developed loss circulation strategy, and the high success rate of its implementation. Three case histories are presented to demonstrate the strategy and results.

2021 ◽  
Author(s):  
Yi Li ◽  
Mohammad Solim Ullah ◽  
Wu Chang Ai ◽  
Thirayu Khumtong ◽  
Kantaphon Temaismithi ◽  
...  

Abstract In Myanmar offshore, a substantially promising gas reservoir was discovered, the objective of primary cementing is to achieve long term zonal isolation, as any gas migration to surface would cause production loss, as well as significant security issues. Remedial cementing work will cause costly non production time, while the result will be compromised. Shallow gas migration, lost circulation and mud removal, all these factors cause undesired negative effects for cementing design, While the objective is to provide a firm barrier and good zonal isolation, this paper will describe in details the cementing challenge, the methodology, and how the slurry parameter was designed and evaluated for a Fit-For-Purpose solution.


2010 ◽  
Vol 123-125 ◽  
pp. 1015-1018 ◽  
Author(s):  
Qi Wang ◽  
Lu Fei Tian ◽  
Peng Song ◽  
Zhen Liu

Different heat-treatments were carried out on the Ti-Ni shape memory alloy, alloy thread was made to straight line with the self-made alignment on 500 °C and then self-made angle training meter was used to train the alloys. Cement-based smart materials were prepared by the method of rolling agglomeration. Finally, indoor simulation experiment was carried out. The results show that the shape recovery ration becomes lower when quenching medium are hot-oil, hot-water, cold-oil and cold-water. The smart lost-circulation control material response quickly to external environment, the time from contact with external environment to the begin of distortion is less than or equal to five seconds, and to the end of distortion is less than or equal to sixty seconds.The best volume fraction for cement-based smart plugging material in cement slurry is 20%. Furthermore, the lost-circulation control material possesses the characteristics of a short time plugging and a strong pressure-bearing capability after plugging. And it improves the capacity of the ordinary cement-based smart lost-circulation control material.


2021 ◽  
Author(s):  
Kory Hugentobler ◽  
Joseph M. Shine ◽  
Alejandro De La Cruz Sasso ◽  
Abdulmalek Shamsan ◽  
Sandip Patil ◽  
...  

Abstract In certain regions of oil and gas operations, lost circulation is a common occurrence, especially when a majority of the openhole exposed during primary cementing is carbonate-based formations. This can lead to lost circulation risks in most applications. To overcome lost circulation risks during primary cementing, a new tailored spacer system shows to improve the cement placement success. The manuscript discusses the quality assurance and performance testing with field cases demonstrating the value contributions of the spacer for achieving zonal isolation requirements as well as the top of cement objectives. The work efforts presented shows a spacer meeting and sometimes showing incremental wellbore strengthening in comparison to the published literature for existing available spacers used to overcome similar lost circulation risks.


2021 ◽  
Author(s):  
David Salinas Sanchez ◽  
Mario Noguez Lugo ◽  
Oscar Zamora Torres ◽  
Cuauhtemoc Cruz Castillo ◽  
Moises Muñoz Rivera ◽  
...  

Abstract A 7-in. liner was successfully cemented in the south east region of Mexico at 7530 m MD despite significant pressure and temperature challenges. The entire 1,370-m, 8.5" open hole section needed cement coverage and isolation to test several intervals. The challenge of the ultranarrow working pressure window was overcome by using managed pressure cementing (MPC) along with lost circulation solutions for the cement slurry and spacer. Due to the narrow pressure window (0.05 g/cc density gradient), mud losses could not be avoided during the cementing job. To limit and manage losses, an MPC placement technique was proposed, in conjunction with using lost circulation fiber technology in the cement slurry and spacer. After addressing the losses and narrow working pressure window, the next main challenge was the extremely high temperature (Bottom hole static temperature of 171°C). Extensive lab testing provided the fluid solution: HT formulations for cement slurry and spacer to maintain stability and rheology for placement and management of equivalent circulating density and set cement properties for long-term zonal isolation. After the liner was run to bottom, the mud density was homogenized from 1.40 g/cc to 1.30 g/cc (pore pressure: 1.38 g/cc). During this process, 32.5 m3 of mud was lost to the formation. During the previous circulation, the backpressure required to maintain the equivalent circulation density (ECD) above pore pressure, which was calculated and validated resulting in 1,100 psi annulus surface pressure (close to the limit of the equipment capacity) during the stopping time. The cementing job was pumped flawlessly with only 10 m3 of mud loss at the end of the job. During reverse circulation, contaminated spacer at surface indicated no cementing fluid had been lost to the formation and adequate open-hole coverage. The liner was successfully pressure tested to 4,500 psi, and cement logs showed that the cement had covered the open hole completely. MPC is not a conventional cementing technique. After the successful result on this job and subsequent operations, this technique is now being adopted to optimize cementing in even deeper wells in Mexico, where losses during cementing operations in the past had modified or limited the whole well construction and designed completion, and production of the well.


2021 ◽  
Author(s):  
Emmanuel Therond ◽  
Yaseen Najwani ◽  
Mohamed Al Alawi ◽  
Muneer Hamood Al Noumani ◽  
Yaqdhan Khalfan Al Rawahi ◽  
...  

Abstract The Khazzan and Ghazeer gas fields in the Sultanate of Oman are projected to deliver production of gas and condensate for decades to come. Over the life of the project, around 300 wells will be drilled, with a target drilling and completion time of 42 days for a vertical well. The high intensity of the well construction requires a standardized and robust approach for well cementing to deliver high-quality well integrity and zonal isolation. The wells are designed with a surface casing, an intermediate casing, a production casing or production liner, and a cemented completion. Most sections are challenging in terms of zonal isolation. The surface casing is set across a shallow-water carbonate formation, prone to lost circulation and shallow water flow. The production casing or production liner is set across fractured limestones and gas-bearing zones that can cause A- and B-Annulus sustained casing pressure if not properly isolated. The cemented completion is set across a high-temperature sandstone reservoir with depletion and the cement sheath is subjected to very high pressure and temperature variations during the fracturing treatment. A standardized cement blend is implemented for the entire field from the top section down to the reservoir. This blend works over a wide slurry density and temperature range, has expanding properties, and can sustain the high temperature of the reservoir section. For all wells, the shallow-water flow zone on the surface casing is isolated by a conventional 11.9 ppg lightweight lead slurry, capped with a reactive sodium silicate gel, and a 15.8 ppg cement slurry pumped through a system of one-inch flexible pipes inserted in the casing/conductor annulus. The long intermediate casing is cemented in one stage using a conventional lightweight slurry containing a high-performance lost circulation material to seal the carbonate microfractures. The excess cement volume is based on loss volume calculated from a lift pressure analysis. The cemented completion uses a conventional 13.7 - 14.5 ppg cement slurry; the cement is pre-stressed in situ with an expanding agent to prevent cement failure when fracturing the tight sandstone reservoir with high-pressure treatment. Zonal isolation success in a high-intensity drilling environment is assessed through key performance zonal isolation indicators. Short-term zonal isolation indicators are systematically used to evaluate cement barrier placement before proceeding with installing the next casing string. Long-term zonal isolation indicators are used to evaluate well integrity over the life of the field. A-Annulus and B-Annulus well pressures are monitored through a network of sensors transmitting data in real time. Since the standardization of cementing practices in the Khazzan field short-term job objectives met have increased from 76% to 92 % and the wells with sustained casing pressure have decreased from 22 % to 0%.


2021 ◽  
Author(s):  
Allam Putra Rachimillah ◽  
Cinto Azwar ◽  
Ambuj Johri ◽  
Ahmed Osman ◽  
Eric Tanoto

Abstract Cementing is one of the sequences in the drilling operations to isolate different geological zones and provide integrity for the life of the well. As compared with oil and gas wells, geothermal wells have unique challenges for cementing operations. Robust cementing design and appropriate best practices during the cementing operations are needed to achieve cementing objectives in geothermal wells. Primary cementing in geothermal wells generally relies on a few conventional methods: long string, liner-tieback, and two-stage methods. Each has challenges for primary cementing that will be analyzed, compared, and discussed in detail. Geothermal wells pose challenges of low fracture gradients and massive lost circulation due to numerous fractures, which often lead to a need for remedial cementing jobs such as squeeze cementing and lost circulation plugs. Special considerations for remedial cementing in geothermal wells are also discussed here. Primary cement design is critical to ensure long-term integrity of a geothermal well. The cement sheath must be able to withstand pressure and temperature cycles when steam is produced and resist corrosive reservoir fluids due to the presence of H2S and CO2. Any fluid trapped within the casing-casing annulus poses a risk of casing collapse due to expansion under high temperatures encountered during the production phase. With the high heating rate of the geothermal well, temperature prediction plays an important part in cement design. Free fluid sensitivity test and centralizer selection also play an important role in avoiding mud channeling as well as preventing the development of fluid pockets. Analysis and comparison of every method is described in detail to enable readers to choose the best approach. Massive lost circulation is very common in surface and intermediate sections of geothermal wells. On numerous occasions, treatment with conventional lost-circulation material (LCM) was unable to cure the losses, resulting in the placement of multiple cement plugs. An improved lost circulation plug design and execution method are introduced to control massive losses in a geothermal environment. In addition, the paper will present operational best practices and lessons learned from the authors’ experience with cementing in geothermal wells in Indonesia. Geothermal wells can be constructed in different ways by different operators. In light of this, an analysis of different cementing approaches has been conducted to ensure robust cement design and a fit-for-purpose cementing method. This paper will discuss the cementing design, equipment, recommendations, and best available practices for excellence in operational execution to achieve optimal long-life zonal isolation for a geothermal well.


2021 ◽  
Author(s):  
Faizan Ahmed Siddiqi ◽  
Carlos Arturo Banos Caballero ◽  
Fabricio Moretti ◽  
Mohamed AlMahroos ◽  
Uttam Aswal ◽  
...  

Abstract Lost circulation is one of the major challenges while drilling oil and gas wells across the world. It not only results in nonproductive time and additional costs, but also poses well control risk while drilling and can be detrimental to zonal isolation after the cementing operation. In Ghawar Gas field of Saudi Arabia, lost circulation across some naturally fractured formations is a key risk as it results in immediate drilling problems such as well control, formation pack-off and stuck pipe. In addition, it can lead to poor isolation of hydrocarbon-bearing zones that can result in sustained casing pressure over the life cycle of the well. A decision flowchart has been developed to combat losses across these natural fractures while drilling, but there is no single solution that has a high success rate in curing the losses and regaining returns. Multiple conventional lost circulation material pills, conventional cement plugs, diesel-oil-bentonite-cement slurries, gravel packs, and reactive pills have been tried on different wells, but the probability of curing the losses is quite low. The success with these methods has been sporadic and shown poor repeatability, so the need of an engineered approach to mitigate losses is imperative. An engineered composite lost-circulation solution was designed and pumped to regain the returns successfully after total losses across two different formations on a gas well in Ghawar field. Multiple types of lost-circulation material were tried on this well; however, all was lost to the naturally fractured carbonate formation. Therefore, a lost-circulation solution was proposed that included a fiber-based lost-circulation control (FBLC) pill, composed of a viscosifier, optimized solid package and engineered fiber system, followed by a thixotropic cement slurry. The approach was to pump these fluids in a fluid train so the FBLC pill formed a barrier at the face of the formation while the thixotropic cement slurry formed a rapid gel and quickly set after the placement to minimize the risk of losing all the fluids to the formation. Once this solution was executed, it helped to regain fluid returns successfully across one of the naturally fractured zones. Later, total losses were encountered again across a deeper loss zone that were also cured using this novel approach. The implementation of this lost-circulation system on two occasions in different formations has proven its applicability in different conditions and can be developed into a standard engineered approach for curing losses. It has greatly helped to build confidence with the client, as it contributed towards minimizing non-productive time, mitigated the risk of well control, and assisted in avoiding any remedial cementing operations that may have developed due to poor zonal isolation across certain critical flow zones.


2017 ◽  
Author(s):  
Xiangyu Liu ◽  
Katherine Aughenbaugh ◽  
Hanna Lee ◽  
Sriramya Nair ◽  
Eric van Oort

Sign in / Sign up

Export Citation Format

Share Document