First MPD Project in Myanmar Successfully Completed on Deepwater Exploration Well

2021 ◽  
Author(s):  
Harpreet Kaur Dalgit Singh ◽  
Bao Ta Quoc ◽  
Benny Benny ◽  
Ching Shearn Ho

Abstract With the many challenges associated with Deepwater Drilling, Managed Pressure Drilling has proven to be a very useful tool to mitigate many hurdles. Client approached Managed Pressure Drilling technology to drill Myanmar's first MPD well on a Deepwater exploration well. The well was drilled with a Below Tension Ring-Slim Rotating Control Device (BTR-S RCD) and Automated MPD Choke System installed on semi-submersible rig, Noble Clyde Boudreaux (NCB). The paper will detail MPD objectives, application and well challenges, in conjunction with pore pressure prediction to manage the bottom hole pressure to drill to well total depth safely and efficiently. This exploration well was drilled from a water depth of 590m from a Semisubmersible rig required MPD application for its exploratory drilling due to uncertainties of drilling window which contained a sharp pressure ramp, with a history of well bore ballooning there was high potential to encounter gas in the riser. The Deepwater MPD package integrated with the rig system, offered a safer approach to overcome the challenges by enhanced influx monitoring and applying surface back pressure (SBP) to adjust bottom hole pressures as required. Additionally, modified pore pressure hunting method was incorporated to the drilling operation to allow more accurate pore pressure prediction, which was then applied to determine the required SBP in order to maintain the desired minimum overbalance while drilling ahead. The closed loop MPD circulating system allowed to divert returns from the well, through MPD flow spool into MPD distribution manifold and MPD automated choke manifold system to the shakers and rig mud gas separator (MGS). The automated MPD system allows control and adjustments of surface back pressure to control bottom hole pressure. MPD technology was applied with minimal overbalance on drilling and connections while monitoring on background gases. A refined pore pressure hunting method was introduced with manipulation of applied surface back pressure to define this exploration well pore pressure and drilling window. The applied MPD Deepwater technique proved for cost efficiency and rig days to allow two deeper casing setting depths and eliminating requirement to run contingency liners. MPD system and equipment is proving to be a requirement for Deepwater drilling for optimizing drilling efficiency. This paper will also capture detailed lesson learned from the operations as part of continuous learning for improvement on Deepwater MPD drilling.

2021 ◽  
Author(s):  
Muhammad Jamaluddin Muhammad ◽  
Carlos Iturrios ◽  
Abdallah Kadadha ◽  
Mojtaba Alqatari ◽  
Ayoub Hadj-Moussa

Abstract Managed Pressure Drilling is an adaptive drilling technique used to precisely assess the formation pressure limits and manage the annular pressure profile accordingly. MPD uses a lighter mud density that with assistance of surface backpressure maintain the overbalance condition, and the dynamic adjustment of this surface pressure allows to maintain Constant Bottomhole Pressure (CBHP) in both dynamic and static conditions. Generally, MPD system reduces the extra overbalanced pressure applied on a formation while drilling conventionally Recently, the operator utilized Managed Pressure Drilling (MPD) Constant bottom hole pressure (CBHP) technique to drill a challenging HPHT gas well successfully through an exploration field. The case study field elaborates challenges of uncertain formation pressure, narrow pore pressure-fracture pressure window and high background gas readings leading to extreme well complications. These challenges were counteracted with the implementation of Managed pressure drilling MPD technology, enabling to drill a well without any complications. To coupe with the complications including high temperature, narrow mud window & CO2 influx, MPD technology was called to be utilized in the challenging exploration field. With the implementation of MPD in this exploration drilling campaign, the case study well proved to optimize the overall drilling process, hence proving an answer to the previous problems in the field. The subject well was the first well to reach this depth. As a starting point, the actual bottom hole pressure limitations were established by performing MPD pore pressure tests, due to the lack of data as the only other option was to rely on geo-mechanics interpretations which is not very accurate, considering the case study specifically. Being it an exploration field, the bottom hole conditions were inconsistent and uncertain. The fully automatic MPD system enabled real-time evaluation and instant adjustment of the bottom-hole formation pressure changes, throughout the drilling process. The precise and instant control of bottom-hole pressure was the key factor of the overall success, hence mitigating any well complications, which previously costed weeks of rig days and associated oil based mud costs during losses. Since MPD technique evaluates & optimizes the required mud weight, hence saving the unnecessary overbalance on the well which had been the cause of several problems previously like losses, differential sticking and ballooning. Furthermore, for these critical narrow window wells, there was a need of a fool proof gain/loss monitoring system to stay top of the game all times. The sophisticated early kick/loss detection feature of the MPD system added value to the operation, which was independent of the conventional rig mud pit transfers and mixing which usually trigger false gain/loss alarms. The narrow drilling window was exacerbated by the increase in annulus frictional losses for these extended wells. The approach of ‘Prevention is always better than cure’ was adopted by the operator, since MPD prevents/mitigates a lot of hazards before they happen. This publication summarizes the details of how the MPD CBHP technique, early kick detection system & instant control system made it possible to efficiently and successfully execute the drilling process safely. It was proved that real time monitoring, and instant reactions are necessary to be able to adjust the BHP to keep the well under control throughout the drilling and post drilling operations like reaming trip in these types of high gas bearing formations. Hence MPD enabled the drilling of complex geological and weak fracture strength formations without any NPT for well control situations with the few value-added benefits like improved ROP, extending the total depth by 1300 ft additional to the initial plan achieving the deepest TVD (true vertical depth) drilled in the field.


2021 ◽  
Author(s):  
Babar Kamal ◽  
Emil Stoian ◽  
Graeme MacFarlane

Abstract This paper reviews the recently concluded successful application of a Managed Pressure Drilling (MPD) system on a High-Pressure High-Temperature (HPHT) well with Narrow Mud Weight Window (NMWW) in the UK sector in the Central North Sea. Well-A was drilled with the Constant Bottom Hole Pressure (CBHP) version of MPD with a mud weight statically underbalanced and dynamically close to formation pore pressure. Whilst drilling the 12-1/2" section of the well with statically under-balanced mud weight, to minimize the overbalance across the open hole, an influx was detected by the MPD system as a result of drilling into a pressure ramp. The MPD system allowed surface back pressure to be applied and the primary barrier of the well re-established, resulting in a minimal influx volume of 0.06 m3 and the ability to circulate the influx out by keeping the Stand Pipe Pressure (SPP) constant while adjusting Surface Back Pressure (SBP) through the MPD chokes in less than 4 hours with a single circulation. After reaching the 12-1/2" section TD, only ~0.025sg (175 psi) Equivalent Mud Weight (EMW) window was available to displace the well and pull out of hole (POOH) the bottom hole assembly (BHA) therefore, 3 × LCM pills of different concentrations were pumped and squeezed into the formation with SBP to enhance the NMWW to 0.035sg EMW (245 psi) deemed necessary to kill the well and retrieve BHA. MPD allowed efficient cement squeeze operations to be performed in order to cement the fractured/weak zones which sufficiently strengthened the well bore to continue drilling. A series of Dynamic Pore Pressure and Formation Integrity Tests (DPPT and DFIT) were performed to evaluate the formation strength post remedial work and to define the updated MMW. Despite the challenges, the MPD system enabled the delivery of a conventionally un-drillable well to target depth (TD) without any unplanned increase/decrease in mud weight or any costly contingency architecture operations, whilst decreasing the amount of NPT (Non Productive Time) and ILT (Invisible Lost Time) incurred. This paper discusses the planning, design, and execution of MPD operations on the Infill Well-A, the results achieved, and lessons learned that recommend using the technology both as an enabler and performance enhancer.


2021 ◽  
Author(s):  
Umair Ahmed Baig ◽  
Ghulam Nabi Agha

Abstract The Bela Well is situated on Makran accretionary prism with several active mud volcanoes that makes conventional drilling challenging due to the extremely high pore pressure i.e. in excess of 15,000 psi and a very narrow window between pore pressure and fracture pressure. This adverse condition was observed in the 9 offset wells drilled within this basin with problems related to wellbore instability, lost-circulation zones and over-pressured formations leading to kick/loss well control scenarios that resulted in the well being abandoned prior to reaching the geological target. The constraint to drill the planned and 8-3/8" section in the well was the unpredictability of the pore/fracture pressure in the Panjgur formation representing a high-level operational risk. Solutions to tackle such a high pressure well included incorporating heavy grade casing i.e. 9-7/8"- 72 ppf in the planning stage, utilization of a 3000 HP rig to cater to extreme axial and hydraulic loads. Whereas MPD was planned as a technique to cater to the narrow window between pore pressure and fracture pressure. A managed pressure drilling (MPD) system was utilized to enable drilling the 8-3/8" hole section. An MPD system that applies constant bottom hole pressure enabled drilling the section with statically underbalanced mud weight by keeping a constant surface back pressure to prevent any influx. The drilling window for MPD was validated by determining the Bottom Hole Pressure where both, an influx from the formation and fluid losses occurred. These values were later used to establish the target Equivalent Circulating Density-ECD to drill the hole accordingly. Trips for BHA change or BOP test were performed by placing a pressurized mud cap in the wellbore. This paper describes in detail the successful MPD application resulted in the first well being drilled in the Makran accretionary prism to a depth of 5000 m. Lessons learned and challenges encountered will also be discussed in this paper


2021 ◽  
Author(s):  
Ahmed Al Mutawa ◽  
Ibrahim Hamdy ◽  
Eias Daban Al Shamisi ◽  
Bassem El Yossef ◽  
Mohamed Sameer Amin ◽  
...  

Abstract Biogenic gas resources have gathered importance recently due to its widespread availability, occurrence at geologically predictable circumstances, and existence at shallow depths. It is estimated that biogenic gas forms more than 20% of the global discovered reserves. However, the exploration and development of these unconventional resources come with numerous drilling and reservoir challenges. This paper showcases a novel approach used in the United Arab Emirates to overcome these challenges using managed pressure and underbalanced drilling. To tackle both reservoir and drilling challenges, a hybrid solution combining Underbalanced (UBD) and Managed Pressure Drilling (MPD) was applied. UBD was used to characterize the reservoir in terms of pressure and productivity index to ultimately enhance productivity by eliminating formation damage. MPD was used next to continue drilling through the problematic zone which had high instability due to the presence of highly sensitive salt, in addition to the presence of high pressure and loss zones. The fit for purpose hybrid application design allowed the operator to immediately switch between UBD and MPD conditions, as the well required with the same equipment. Three of the four targeted formations were in the 8 ½″ hole section, UBD was selected to drill the first reservoir formation which allowed pore pressure verification and avoided using excessive mud weight that was the culprit of many challenges like slow ROP, drilling fluid losses, bit balling, and fracking the formations. UBD has proved that mud weight can be reduced by 20%-30% comparing to conventional drilling. The second formation was a salt formation that has caused previously hole collapse and losses-kicks problems as heavy mud used to drill this salty formation. MPD used successfully drill this section by constant bottom hole pressure and lower mud weight as it was found from analyzing offset wells reports that hole collapse occurred at connections and pump off events. Constant Bottom Hole Pressure (CBHP) also eliminated tight spots and excessive reaming resulting in optimized drilling. The third formation used MPD as well to minimize overbalance pressure over previous sections while the fourth formation was drilled by UBD as it had a separate 6″ hole section as it formed an independent reservoir. The combined MPD and UBD approach eliminated most the NPT encountered in offset wells, enhanced Rate of Penetration (ROP) by 200% to 300% and slashed the well drilling time by 27 days.


2013 ◽  
Author(s):  
Mengjiao Yu ◽  
Ali Karimi Vajargah ◽  
Stefan Z Miska ◽  
Reza Majidi ◽  
Mehmet Evren Ozbayoglu

2019 ◽  
Vol 2 (1) ◽  

With the increase of global deepwater drilling, the scale of the deepwater drilling contract market continues to expand, and the depth of the drilling operations constantly refreshes the record. At the same time, the drilling environment and related geological conditions becomes more and more complex, which leads to the increase of the risk in the operation of deepwater drilling. After the happening of “Deepwater Horizon Accident” in the Gulf of Mexico, the prevention and control of blowout has become an urgent problem to be solved in the development of offshore oil and gas. Dealing with the problem of overflow and blowout in deepwater drilling, the most effective technical measures are based on early detection and identification of gas influx. The research on the degree of gas invasion is the basis of the formulation and implementation of well control measures. In this paper, a simulation model of gas-liquid two-phase flow after the happening of gas influx is established to calculate the cross section gas content, mud tank overflow, and bottom-hole pressure. Through the calculation, the real-time quantitative relationship between the characterization of the gas content and the bottom-hole pressure and the increment of the mud pool was established, and then the realtime quantitative degree of gas invasion is analyzed.


2014 ◽  
Author(s):  
Nelson O Pinero Zambrano ◽  
Ibraheem M Al-Ageel ◽  
Muhammad Abdul Muqeem ◽  
Abdulaziz Sallim Al Mutawa ◽  
Mohamed Cherif Mazouz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document