Reservoir Fluid Mapping While Drilling: Untapping the Barents Sea

2021 ◽  
Author(s):  
Maria Cecilia Bravo ◽  
Yon Blanco ◽  
Mauro Firinu ◽  
Tosi Gianbattista ◽  
Eriksen Martin ◽  
...  

Abstract In complex and sensitive environments such as the northern Barents Sea, operations face multiple challenges, both technically and logistically. The use of logging while drilling (LWD) technology mitigates risks and assures acquisition of formation evaluation data in a complex trajectory. All data gathering was performed in LWD and provided the kernel for interpretation; alternate scenarios utilizing pipe conveyed wireline elevated risk factors as well as higher overall costs. Novel technology was required for this data acquisition, including fluid mapping while drilling (FMWD) that allows fluid identification with the use of downhole fluid analysis (DFA) using optical spectrometry as well as the retrieval of downhole fluid samples and a unique sourceless multifunction LWD tool delivering key data for the petrophysical evaluation. This paper presents a case study of the first application of a combination of FMWD and a petrophysical LWD toolstring in the Barents Sea. An excellent contribution to the operator of the PL229 that have pushed the boundaries of the formation sampling while drilling and set the basis to challenge the potentiality of this technique and improve the knowledge of the methodology that are the ultimate goals of this paper. Methods, procedures, process Hydrocarbon exploration, production, and transport in the Barents Sea are challenging. The shallow and complex reservoirs are at low temperature and pressure, potentially with gas caps. The Goliat field is the first offshore oil development in this environment, producing from two reservoirs: Realgrunnen and Kobbe. As part of the Goliat field infill drilling campaign with the aim of adding reserves and increase production, PL229 license operator drilled a highly deviated pilot hole to confirm hydrocarbons contacts in the undrained Snadd formation, which lie between two producing reservoirs. A successful data acquisition would not only provide information on the structure of the reservoir but would also assess the insitu movable fluid: type of hydrocarbon or water. FMWD allowed insitu fluid identification with the use of DFA, enabling RT evaluation of hydrocarbon composition as well as the filtrate contamination prior to filling the sampling bottles for further laboratory analysis. All data was acquired while drilling and using a comprehensive real-time visualization interface. Results, observation, conclusion Extensive prejob planning was conducted to optimize the operation. Dynamic fluid invasion simulations were used to estimate the required cleanup times to reach low contaminations. Simulations showed there was significant advantage in cleanup times when sampling soon after drilling. Honoring the natural environment, a unique sourceless multifunction LWD tool was used to acquire data for petrophysical evaluation-GR, resistivity, radioisotope-free density and neutron porosity, elemental capture spectroscopy, and sigma. Fluid mapping in a single run was key to efficiently resolve the insitu fluid type and composition. Critical hydrocarbon samples were collected soon after the formation was drilled to minimize mud filtrate invasion and reduce cleanup times. Multiple pressure measurements were acquired and six downhole fluid samples at low contamination (∼3% confirmed by laboratory) collected at several stations in variable mobilities. One scanning station was done at a zone were a physical sample was not required to confirm absence of gas cap. The DFA capabilities and ability to assess composition and control the fluid cleanup from surface allowed critical decisions to complete the acquisition program in this remote complex environment, all while drilling. In conclusion, FMWD results facilitated the placement decisions of the horizontal drain in this reservoir. This green BHA is unique in the LWD world. It eliminates radioactive source-handling and all related environmental risks to provide a comprehensive reservoir characterization. FMWD contributes formation pressure and fluid characterization and enables the physical capture of fluid samples in a single run. The combination of these two technologies completed the formation and fluid evaluation needs in this remote and environmentally sensitive area while drilling.

2014 ◽  
Vol 2 (3) ◽  
pp. SH67-SH77 ◽  
Author(s):  
Lars Ole Løseth ◽  
Torgeir Wiik ◽  
Per Atle Olsen ◽  
Jan Ove Hansen

The discovery of Skrugard in 2011 was a significant milestone for hydrocarbon exploration in the Barents Sea. The result was a positive confirmation of the play model, prospect evaluation, and the seismic hydrocarbon indicators in the area. In addition, the well result was encouraging for the CSEM interpretation and analysis that had been performed. Prior to drilling the 7220/8-1 well, EM resistivity images of the subsurface across the prospect had been obtained along with estimates of hydrocarbon saturation at the well position. The resistivity distribution was derived from extensive analysis of the multiclient CSEM data from 2008. The analysis was based on joint interpretation of seismic structures and optimal resistivity models from the CSEM data. The seismic structure was furthermore used to constrain the resistivity anomaly to the Skrugard reservoir. Scenario testing was then done to assess potential alternative models that could explain the CSEM data in addition to extract the most likely reservoir resistivity. Estimates of hydrocarbon saturation followed from using petrophysical parameters from nearby wells and knowledge of the area, combined with the most likely resistivity model from CSEM. Our results from the prewell study were compared to the postwell resistivity logs, for horizontal and vertical resistivity. We found a very good match between the estimated CSEM resistivities at the well location and the corresponding well resistivities. Thus, our results confirmed the ability of CSEM to predict hydrocarbon saturation. In addition, the work demonstrated limitations in the CSEM data analysis tools as well as sensitivity to acquisition parameters and measurement accuracy. The work has led to more CSEM data acquisition in the area and continued effort in development of our tools for data acquisition and analysis.


Author(s):  
D.V. Shantsev ◽  
P.T. Gabrielsen ◽  
S. Fanavoll

2020 ◽  
Author(s):  
Gaia Travan ◽  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Virginie Gaullier ◽  
Dwarika Maharjan ◽  
...  

<p>The geology of the Barents Sea has been widely studied because of the interest for hydrocarbon exploration. Our study focuses on the SW Barents Sea, on the western side of the Senja Ridge in the Sørvestsnagets Basin, which is still a less deciphered area. Located at the limit of the continental shelf, this deep Cretaceous basin is characterized by a several-kilometer-thick sequence of Cenozoic sediments locally influenced by salt structures. Because of the peculiar rheological characteristics of salt, the deposition of evaporites during Permo-Carboniferous times still represents a key aspect to deeply understand the geological setting because salt tectonics considerably affects the brittle sedimentary cover.</p><p>5,500 km<sup>2</sup> of high-quality 3D seismic data, integrated with potential field data and existing wells, led to the interpretation of the main horizons and unconformities in the sedimentary sequence, with focus on the salt structures.</p><p>The top of the salt is characterized by a strong positive-amplitude reflection in the seismic data, and has been interpreted with a line spacing of 100 m. Subsequent gridding of the interpreted horizon to a bin size of 12.5 m highlights that the geomorphology for the top of the three salt structures is particularly complex, with presence of salt horns and development of minibasins above the salt. Integration of potential field data shows a strong correlation between salt structures and low values in Bouguer-Gravity anomalies. Different families of faults related to salt and to crustal tectonics have been mapped, and strong seismic anomalies related to faults above the salt structures are identified at multiple stratigraphic levels. Part of these faults have been active until 20 000 years ago, and are rarely active at present day.</p><p>The three salt structures interpreted on the western side of the Senja Ridge have a total extent of around 800 km<sup>2</sup> and are mainly the consequence of different pulses of reactive diapirism, due to several diachronous rifting events during the opening of the Barents Sea. After the opening of the Sørvestsnagets Basin, salt tectonics continued and was influenced by crustal movements and glacial sedimentation and erosion in this pull-apart basin setting.</p><p>The presence of the strong seismic anomalies above the salt structures is interpreted as gas accumulations, which makes this topic of particular interest for the future development of the oil and gas industry of the SW Barents Sea.</p>


1992 ◽  
Author(s):  
K. von der Heydt ◽  
J. Kemp ◽  
J. Lynch ◽  
J. Miller ◽  
C. S. Chiu

2017 ◽  
Author(s):  
Pedro Alvarez ◽  
Fanny Marcy ◽  
Mark Vrijlandt ◽  
Kim Nichols ◽  
Rob Keirstead ◽  
...  

2020 ◽  
Author(s):  
Sigrun Maret Kvendbø Hegstad ◽  
Juha Ahokas ◽  
Matthias Forwick ◽  
Sten-Andreas Grundvåg

<p>The Barents Sea Shelf on the north-western corner of the Eurasian plate has a complex geological history, comprising large-scale processes controlled by plate movements, climatic variations and changing depositional environments. During the last decades, as the search for hydrocarbons within the area gained increased interest, Triassic sequences have been the target of comprehensive investigations. In our project, we test the potential of improving the correlation of Triassic strata using X-ray fluorescence (XRF) core scanning of siliciclastic drill cores.</p><p>XRF core scanning is a frequently used method on soft sediment cores, e.g. within marine geology and palaeo-climate studies. However, the applicability of this method on drill cores from exploration wells from the hydrocarbon industry has not been tested so far. We use this method to establish geochemical stratigraphic parameters, as well as to contribute to the identification of provenances, reconstruct palaeo-envrionments, and support the correlation of drill cores. This provides a novel, fast, inexpensive, and non-destructive method to be applied in hydrocarbon exploration, as well as in studies of lithified siliciclastic sediments in general.</p><p>Triassic intervals from 24 shallow drill cores from the southern Barents Sea (Finnmark Platform, Nordkapp Basin, Svalis Dome, Maud Basin and Bjarmeland Platform) provide the basis for this study. The cores have previously been comprehensively studied and described by IKU (the Norwegian Continental Shelf Institute; today SINTEF Petroleum Research), and studies of provenance and palaeo-environment have also been performed (e.g. Vigran et al., 1986). This data makes it possible to compare the geochemical units established in this study with other stratigraphic information.</p><p>We present preliminary results of establishing geochemical units from XRF core scanning, and the use of these for correlation within known stratigraphic frameworks and between geographic areas, as well as to increase the understanding of changes in provenance and palaeo-environments within these successions in the Barents Sea.</p><p>References:<br>Vigran, J.O., G. Elvebakk, T.L. Leith, T. Bugge, V. Fjerdingstad, R.M. Goll, R. Konieczny, and A. Mørk. 1986. 'Dia-Structure Shallow Drilling 1986. Main data report. IKU Rep. No. 21.3420.00/04/86, 242 pp'.</p><p> </p>


Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


Sign in / Sign up

Export Citation Format

Share Document