Detecting Skrugard by CSEM — Prewell prediction and postwell evaluation

2014 ◽  
Vol 2 (3) ◽  
pp. SH67-SH77 ◽  
Author(s):  
Lars Ole Løseth ◽  
Torgeir Wiik ◽  
Per Atle Olsen ◽  
Jan Ove Hansen

The discovery of Skrugard in 2011 was a significant milestone for hydrocarbon exploration in the Barents Sea. The result was a positive confirmation of the play model, prospect evaluation, and the seismic hydrocarbon indicators in the area. In addition, the well result was encouraging for the CSEM interpretation and analysis that had been performed. Prior to drilling the 7220/8-1 well, EM resistivity images of the subsurface across the prospect had been obtained along with estimates of hydrocarbon saturation at the well position. The resistivity distribution was derived from extensive analysis of the multiclient CSEM data from 2008. The analysis was based on joint interpretation of seismic structures and optimal resistivity models from the CSEM data. The seismic structure was furthermore used to constrain the resistivity anomaly to the Skrugard reservoir. Scenario testing was then done to assess potential alternative models that could explain the CSEM data in addition to extract the most likely reservoir resistivity. Estimates of hydrocarbon saturation followed from using petrophysical parameters from nearby wells and knowledge of the area, combined with the most likely resistivity model from CSEM. Our results from the prewell study were compared to the postwell resistivity logs, for horizontal and vertical resistivity. We found a very good match between the estimated CSEM resistivities at the well location and the corresponding well resistivities. Thus, our results confirmed the ability of CSEM to predict hydrocarbon saturation. In addition, the work demonstrated limitations in the CSEM data analysis tools as well as sensitivity to acquisition parameters and measurement accuracy. The work has led to more CSEM data acquisition in the area and continued effort in development of our tools for data acquisition and analysis.

2021 ◽  
Author(s):  
Maria Cecilia Bravo ◽  
Yon Blanco ◽  
Mauro Firinu ◽  
Tosi Gianbattista ◽  
Eriksen Martin ◽  
...  

Abstract In complex and sensitive environments such as the northern Barents Sea, operations face multiple challenges, both technically and logistically. The use of logging while drilling (LWD) technology mitigates risks and assures acquisition of formation evaluation data in a complex trajectory. All data gathering was performed in LWD and provided the kernel for interpretation; alternate scenarios utilizing pipe conveyed wireline elevated risk factors as well as higher overall costs. Novel technology was required for this data acquisition, including fluid mapping while drilling (FMWD) that allows fluid identification with the use of downhole fluid analysis (DFA) using optical spectrometry as well as the retrieval of downhole fluid samples and a unique sourceless multifunction LWD tool delivering key data for the petrophysical evaluation. This paper presents a case study of the first application of a combination of FMWD and a petrophysical LWD toolstring in the Barents Sea. An excellent contribution to the operator of the PL229 that have pushed the boundaries of the formation sampling while drilling and set the basis to challenge the potentiality of this technique and improve the knowledge of the methodology that are the ultimate goals of this paper. Methods, procedures, process Hydrocarbon exploration, production, and transport in the Barents Sea are challenging. The shallow and complex reservoirs are at low temperature and pressure, potentially with gas caps. The Goliat field is the first offshore oil development in this environment, producing from two reservoirs: Realgrunnen and Kobbe. As part of the Goliat field infill drilling campaign with the aim of adding reserves and increase production, PL229 license operator drilled a highly deviated pilot hole to confirm hydrocarbons contacts in the undrained Snadd formation, which lie between two producing reservoirs. A successful data acquisition would not only provide information on the structure of the reservoir but would also assess the insitu movable fluid: type of hydrocarbon or water. FMWD allowed insitu fluid identification with the use of DFA, enabling RT evaluation of hydrocarbon composition as well as the filtrate contamination prior to filling the sampling bottles for further laboratory analysis. All data was acquired while drilling and using a comprehensive real-time visualization interface. Results, observation, conclusion Extensive prejob planning was conducted to optimize the operation. Dynamic fluid invasion simulations were used to estimate the required cleanup times to reach low contaminations. Simulations showed there was significant advantage in cleanup times when sampling soon after drilling. Honoring the natural environment, a unique sourceless multifunction LWD tool was used to acquire data for petrophysical evaluation-GR, resistivity, radioisotope-free density and neutron porosity, elemental capture spectroscopy, and sigma. Fluid mapping in a single run was key to efficiently resolve the insitu fluid type and composition. Critical hydrocarbon samples were collected soon after the formation was drilled to minimize mud filtrate invasion and reduce cleanup times. Multiple pressure measurements were acquired and six downhole fluid samples at low contamination (∼3% confirmed by laboratory) collected at several stations in variable mobilities. One scanning station was done at a zone were a physical sample was not required to confirm absence of gas cap. The DFA capabilities and ability to assess composition and control the fluid cleanup from surface allowed critical decisions to complete the acquisition program in this remote complex environment, all while drilling. In conclusion, FMWD results facilitated the placement decisions of the horizontal drain in this reservoir. This green BHA is unique in the LWD world. It eliminates radioactive source-handling and all related environmental risks to provide a comprehensive reservoir characterization. FMWD contributes formation pressure and fluid characterization and enables the physical capture of fluid samples in a single run. The combination of these two technologies completed the formation and fluid evaluation needs in this remote and environmentally sensitive area while drilling.


2021 ◽  
Vol 19 (3) ◽  
pp. 63-82
Author(s):  
S. Inichinbia ◽  
Halidu Hamza

The sequence stratigraphy of Amangi field of the Niger Delta was studied using seismic data and well logs. The field is a structurally  complex one and presents serious challenges to hydrocarbon exploration and production. The main objective of these analyses is to  identify sand intervals using the available data. Well log data were used as additional tools to constrain the seismic correlations in order to solve the correlation problem. The well logs were evaluated for the field’s petrophysical properties by combining the gamma ray and resistivity logs to determine reservoir zones with considerable hydrocarbon saturation. Also, the relationship between some basic rock properties/attributes and litho-types were determined for the study area. Next, well-to-seismic ties were produced and two horizons were picked. Acoustic impedance inversion was also performed which revealed “hard sands” due to mixed lithologies (heterolithics). This made it difficult to discriminate the sands from shales in the P-impedance domain alone. So, progress was made to determine the net-to-gross of the field. The analysis revealed that these reservoirs have shaly sand with shale content of 10%, porosity averaging 21%, and hydrocarbon saturation of 90%. The result established a vertical stack of a series of reservoirs in an anticlinal structure of which the H1000 and H4000 stand out for their huge volumes of rich gas condensate accumulation. This discovery provoked the drive for the first phase of development of this field. Keywords: stratigraphy, facies, net-to-gross, horizon, lithology, well-to-seismic tie, impedance


Geophysics ◽  
2021 ◽  
pp. 1-75
Author(s):  
Noah Dewar ◽  
Rosemary Knight

A novel Markov Chain Monte Carlo (MCMC) based methodology was developed for the transformation of resistivity, derived from airborne electromagnetic (AEM) data, into sediment type. This methodology was developed and tested using AEM data and well sediment type and resistivity logs from Butte and Glenn Counties in the Californian Central Valley. Our methodology accounts for the spatially varying sensitivity of the AEM method by constructing different transforms separated based on the sensitivity of the AEM method. The large spatial separation that typically exists between the AEM data and the wells with sediment type logs was avoided by planning the acquisition of AEM data so as to fly as close as possible to the well locations. We had 55 locations with sediment type logs and AEM data separated by 100 m, determined to be the maximum acceptable separation distance. Differences in vertical resolution between the AEM method and the sediment type logs were addressed by modeling the physics of the AEM measurement, allowing for a comparison of field and AEM data generated during the MCMC process. The influence of saturation state was captured by creating one set of transforms for the region above the top of the saturated zone and another for below. Using the set of transforms developed at the 55 locations, an inverse distance weighting scheme that included a well quality ranking was used to construct a set of 12 (six sensitivity bins, and two saturation states) resistivity-to-sediment-type transforms at every AEM data location. These represent a set of transforms that accommodate the variation in AEM sensitivity and are independent of the inversion used to retrieve the resistivity model. These transforms thus avoid two of the significant limitations common to resistivity-to-sediment-type transforms used to interpret AEM data.


Author(s):  
D.V. Shantsev ◽  
P.T. Gabrielsen ◽  
S. Fanavoll

1995 ◽  
Vol 35 (1) ◽  
pp. 405 ◽  
Author(s):  
C.W. Luxton ◽  
S. T. Horan ◽  
D.L. Pickavance ◽  
M.S. Durham.

In the past 100 years of hydrocarbon exploration in the Otway Basin more than 170 exploration wells have been drilled. Prior to 1993, success was limited to small onshore gas fields. In early 1993, the La Bella-1 and Minerva-1 wells discovered significant volumes of gas in Late Cretaceous sandstones within permits VIC/P30 and VIC/P31 in the offshore Otway Basin. They are the largest discoveries to date in the basin and have enabled new markets to be considered for Otway Basin gas. These discoveries were the culmination of a regional evaluation of the Otway Basin by BHP Petroleum which highlighted the prospectivity of VIC/P30 and VIC/P31. Key factors in this evaluation were:geochemical studies that indicated the presence of source rocks with the potential to generate both oil and gas;the development of a new reservoir/seal model; andimproved seismic data quality through reprocessing and new acquisition.La Bella-1 tested the southern fault block of a faulted anticlinal structure in the southeast corner of VIC/P30. Gas was discovered in two Late Cretaceous sandstone intervals of the Shipwreck Group (informal BHP Petroleum nomenclature). Reservoirs are of moderate to good quality and are sealed vertically, and by cross-fault seal, by Late Cretaceous claystones of the Sherbrook Group. The gas is believed to have been sourced from coals and shales of the Early Cretaceous Eumeralla Formation and the structure appears to be filled to spill as currently mapped. RFT samples recovered dry gas with 13 moI-% CO2 and minor amounts of condensate.Minerva-1 tested the northern fault block of a faulted anticline in the northwest corner of VIC/ P31. Gas was discovered in three excellent quality reservoir horizons within the Shipwreck Group. Late Cretaceous Shipwreck Group silty claystones provide vertical and cross-fault seal. The hydrocarbon source is similar to that for the La Bella accumulation and the structure appears to be filled to spill. A production test was carried out in the lower sand unit and flowed at a rig limited rate of 28.8 MMCFGD (0.81 Mm3/D) through a one-inch choke. The gas is composed mainly of methane, with minor amounts of condensate and 1.9 mol-% C02. Minerva-2A was drilled later in 1993 as an appraisal well to test the southern fault block of the structure to prove up sufficient reserves to pursue entry into developing gas markets. It encountered a similar reservoir unit of excellent quality, with a gas-water contact common with that of the northern block of the structure.The La Bella and Minerva gas discoveries have greatly enhanced the prospectivity of the offshore portion of the Otway Basin. The extension of known hydrocarbon accumulations from the onshore Port Campbell embayment to the La Bella-1 well location, 55 km offshore, demonstrates the potential of this portion of the basin.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. D199-D217
Author(s):  
Joshua Bautista-Anguiano ◽  
Carlos Torres-Verdín

It has been previously shown that Nernst’s equation is not reliable for the interpretation of spontaneous potential (SP) measurements acquired in hydrocarbon-bearing rocks. We have examined whether the difference between borehole SP measurements and Nernst-equation predictions could be used to estimate in situ hydrocarbon saturation of porous rocks. For this purpose, a new petrophysical model and a mechanistic finite-difference algorithm for simulating SP borehole measurements in the presence of mud-filtrate invasion are used to establish the limits of detectability of hydrocarbon saturation using only SP logs. We find that the optimal conditions for the detection of hydrocarbon saturation from SP borehole measurements are when (1) capillary forces dominate the process of mud-filtrate invasion, (2) the matrix-pore interface region, known as the electrical double layer, has a relevant impact in the diffusion of counterions, and (3) the electrolyte concentration of drilling mud is greater than that of formation water. We also determine why high values of the endpoint of the water relative permeability favor the detection of hydrocarbon-saturated rocks with the SP log. Using measurements acquired in three key wells within a mature and active hydrocarbon field, three blind tests find that our petrophysical model together with the mechanistic SP simulation algorithm enable the estimation of hydrocarbon saturation from SP borehole measurements without the need for resistivity logs or porosity calculations. The estimation is reliable when the volumetric concentration of shale is negligible, the pore network structure is constant throughout the reservoir, and radial invasion profiles are similar to those observed in the calibration key wells.


2020 ◽  
Vol 8 (4) ◽  
pp. SS1-SS13 ◽  
Author(s):  
Randall L. Mackie ◽  
Max A. Meju ◽  
Federico Miorelli ◽  
Roger V. Miller ◽  
Carsten Scholl ◽  
...  

Geologic interpretation of resistivity models from marine controlled-source electromagnetic (CSEM) and magnetotelluric (MT) data for hydrocarbon exploration and reservoir monitoring can be problematic due to structural complexity and low-resistivity contrasts in sedimentary units typically found in new frontier areas. It is desirable to reconstruct 3D resistivity structures that are consistent with seismic images and geologic expectations of the subsurface to reduce uncertainty in the evaluation of petroleum ventures. Structural similarity is achieved by promoting a cross-gradient constraint between external seismically derived gradient fields and the inversion resistivity model. The gradient fields come from coherency weighted structure tensors computed directly from the seismic volume. Consequently, structural similarity is obtained without the requirement for any horizon interpretation or picking, thus significantly reducing the complexity and effort. We have determined the effectiveness of this approach using CSEM, MT, and seismic data from a structurally complex fold-thrust belt in offshore northwest Borneo.


First Break ◽  
2016 ◽  
Vol 34 (4) ◽  
Author(s):  
Allan McKay ◽  
Grunde Ronholt ◽  
Tashi Tshering ◽  
Sören Naumann

2020 ◽  
Author(s):  
Gaia Travan ◽  
Benjamin Bellwald ◽  
Sverre Planke ◽  
Virginie Gaullier ◽  
Dwarika Maharjan ◽  
...  

<p>The geology of the Barents Sea has been widely studied because of the interest for hydrocarbon exploration. Our study focuses on the SW Barents Sea, on the western side of the Senja Ridge in the Sørvestsnagets Basin, which is still a less deciphered area. Located at the limit of the continental shelf, this deep Cretaceous basin is characterized by a several-kilometer-thick sequence of Cenozoic sediments locally influenced by salt structures. Because of the peculiar rheological characteristics of salt, the deposition of evaporites during Permo-Carboniferous times still represents a key aspect to deeply understand the geological setting because salt tectonics considerably affects the brittle sedimentary cover.</p><p>5,500 km<sup>2</sup> of high-quality 3D seismic data, integrated with potential field data and existing wells, led to the interpretation of the main horizons and unconformities in the sedimentary sequence, with focus on the salt structures.</p><p>The top of the salt is characterized by a strong positive-amplitude reflection in the seismic data, and has been interpreted with a line spacing of 100 m. Subsequent gridding of the interpreted horizon to a bin size of 12.5 m highlights that the geomorphology for the top of the three salt structures is particularly complex, with presence of salt horns and development of minibasins above the salt. Integration of potential field data shows a strong correlation between salt structures and low values in Bouguer-Gravity anomalies. Different families of faults related to salt and to crustal tectonics have been mapped, and strong seismic anomalies related to faults above the salt structures are identified at multiple stratigraphic levels. Part of these faults have been active until 20 000 years ago, and are rarely active at present day.</p><p>The three salt structures interpreted on the western side of the Senja Ridge have a total extent of around 800 km<sup>2</sup> and are mainly the consequence of different pulses of reactive diapirism, due to several diachronous rifting events during the opening of the Barents Sea. After the opening of the Sørvestsnagets Basin, salt tectonics continued and was influenced by crustal movements and glacial sedimentation and erosion in this pull-apart basin setting.</p><p>The presence of the strong seismic anomalies above the salt structures is interpreted as gas accumulations, which makes this topic of particular interest for the future development of the oil and gas industry of the SW Barents Sea.</p>


Sign in / Sign up

Export Citation Format

Share Document