Hole Cleaning Efficiency of Sweeping Pills in Horizontal Wells - Facts or Philosophy?

2020 ◽  
Author(s):  
Oliver Czuprat ◽  
Anne Marte Faugstad ◽  
Piotr Byrski ◽  
Kai Schulze
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 399
Author(s):  
Guoshuai Ju ◽  
Tie Yan ◽  
Xiaofeng Sun

In the drilling of horizontal wells, the drill cuttings tend to settle down on the low side of the annulus due to gravity and form a stationary bed, which results in hole cleaning problems. In this paper, a novel type of drillpipe with an elliptical shape was proposed to alleviate inadequate hole cleaning during the drilling of horizontal wells. A three-dimensional computational fluid dynamic (CFD) Eulerian-Eulerian approach with the Realizable k-ɛ turbulence model was developed to predict the solid–liquid two-phase flow in the annular space. Numerical examples were given to investigate the influence of different parameters on cuttings’ transport behavior, and the elliptical drillpipe was compared with the circular drillpipe. The annular cuttings concentration, annular pressure drop, and hole cleaning efficiency were evaluated. The numerical results clarify the potential of the elliptical drillpipe to enhance the hole cleaning efficiency without significantly increasing the annular pressure drop. Due to the swirl flow and secondary flow caused by the rotation of the curvature wall, the swaying phenomenon of drill cuttings’ distribution along the rotation direction of drillpipe was observed and enhanced the cuttings transport ability. Using the elliptical drillpipe as a joint-type tool can improve hole cleaning performance. Under the optimum conditions applied in this study, the hole cleaning efficiency increased by nearly 18%.


2020 ◽  
Vol 21 (3) ◽  
pp. 1-8
Author(s):  
Sahmi E Mohammed ◽  
Faleh H. M. Almahdawi

The poor hole cleaning efficiency could causes many problems such as high torque, drag, poor hydraulics and pipe stuck. These inherent problems result in an avoidable high operation cost which this study tried to address.  In this study, the effect of cutting density on hole cleaning efficiency in deviated and horizontal wells was investigated. Experiments were conducted using 40 feet (12 m) long of flow loop made from iron and PVC. However, the test section was made from PVC with (5.1m) long and (4” ID) for outer pipe and (2” OD) inner pipe. The cutting transport ratio (CTR) was determined from weight measurements for each test. Cutting Transport Ratio has been investigated for effects of the following parameters; flow rate, cutting size and density, yield point of drilling mud, and inclination angle. Once the setup was positioned at the desired inclination, the cutting was transported for 3 minutes at a constant flow rate and yield point. The amount of cutting removed during each test was thereafter weighted to determine cutting transport ratio CTR. The results obtained from this study showed that the cutting density has a slight to moderate effect on hole cleaning efficiency. Also, there was a remarkable improvement in the cutting transport ratio annular velocity and hole inclination angle was increased. However, the yield point (Yp) was negligible at maximum values of annular velocity. Therefore, at high value of yield point the cuttings with large and medium size were transported more than small size. This case is inversed at a low value of Yp. Moreover, for all sizes the heavy cutting transport less than light cutting. Finally, the critical angle was recorded between 65o-75o. Sigma plot 12.5 program has been used to graph all figures in this paper.


2019 ◽  
Vol 20 (4) ◽  
pp. 35-40
Author(s):  
Karrar Ahmed Mohammed ◽  
Ayad A. Al-Haleem

The main objective of this study is to experimentally investigate the effect of the CMC polymeric drag reducer on the pressure drop occurred along the annulus of the wellbore in drilling operation and investigate the optimum polymer concentration that give the minimum pressure drop. A flow loop was designed for this purpose consist from 14 m long with transparent test section and differential pressure transmitter that allows to sense and measure the pressure losses along the test section. The results from the experimental work show that increasing in polymer concentration help to reduce the pressure drop in annulus and the optimum polymer concentration with the maximum drag reducing is 0.8 kg/m3. Also increasing in flow rate and corresponding fluid velocity in the gap of the annulus helped to reduce the pressure losses due to fluid flow.


2021 ◽  
Vol 73 (05) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 203147, “Investigating Hole-Cleaning Fibers’ Mechanism To Improve Cutting Carrying Capacity and Comparing Their Effectiveness With Common Polymeric Pills,” by Mohammad Saeed Karimi Rad, Mojtaba Kalhor Mohammadi, SPE, and Kourosh Tahmasbi Nowtarki, International Drilling Fluids, prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. Hole cleaning in deviated wells is more challenging than in vertical wells because of the boycott effect or the eccentricity of the drillpipe. Poor hole cleaning can result in problems such as borehole packoff or excessive equivalent circulating density. The complete paper investigates a specialized fibrous material (Fiber 1) for hole-cleaning characteristics. The primary goal is to identify significant mechanisms of hole-cleaning fibers and their merits compared with polymeric high-viscosity pills. Hole-Cleaning Indices Based on a review of the literature, most effective parameters regarding hole cleaning in different well types were investigated. These parameters can be classified into the following five categories: - Well design (e.g., hole angle, drillpipe eccentricity, well trajectory) - Drilling-fluid properties (e.g., gel strength, mud weight) - Formation properties (e.g., lithology, cutting specific gravity, cuttings size and shape) - Hydraulic optimizations (e.g., flow regime, nozzle size, number of nozzles) - Drilling practices (e.g., drillpipe rotation speed, wellbore tortuosity, bit type, rate of penetration, pump rate) In this research, rheological parameters and parameters of the Herschel-Bulkley rheological model are considered to be optimization inputs to increase hole-cleaning efficiency of commonly used pills in drilling operations. The complete paper offers a detailed discussion of both the importance of flow regime and the role of the Herschel-Bulkley rheological model in reaching a better prognosis of drilling-fluid behavior at low shear rates. The properties of the fibrous hole-cleaning agent used in the complete paper are provided in Table 1. Test Method Two series of tests were performed. The medium of the first series is drilling water, with the goal of evaluating the efficiency of Fiber 1 in fresh pills. The second series of tests was per-formed with a simple polymeric mud as a medium common in drilling operations. Formulations and rheological properties of both test series are provided in Tables 4 and 5 of the complete paper, respectively.


Author(s):  
Evren M. Ozbayoglu ◽  
Flavio Rodrigues ◽  
Reza Ettehadi ◽  
Roland May ◽  
Dennis Clapper

Abstract As explorations advance and drilling techniques become more innovative, complex and challenging trajectories arise. In consequence, cuttings transport has continued to be a subject of interest because, if the drilled cuttings cannot be removed from the wellbore, drilling cannot proceed for long. Therefore, efficient cleaning of highly inclined and horizontal wellbores is still among the most important problems to solve, because these types of wells require specialized fluid formulations and/or specific hole cleaning techniques. There are numerous studies and methods that focus in cuttings transportation in highly inclined and horizontal wells. One of them is the use of viscosity and density sweeps. Sweep pills have been used in the drilling industry as a tool to improve hole cleaning. This report presents the analysis of the performance of different sweeps pills working independently and in tandem in polymeric, oil and synthetic based systems and the comparison between them. The main objective of this project is to provide experimental evidence on which types of fluids perform better under certain conditions by studying the effect of viscosity and density in the bed erosion process in highly inclined and horizontal wells. In order to achieve that, several fluid formulations were tested at different inclination angles (90, 75, 60 degrees) in the Small Indoor Flow Loop property of The University of Tulsa’s Drilling Research Projects. The results of the tests are presented in terms of volume of drilled cuttings removed from the test section and measured differential pressures. All the tests were conducted under atmospheric pressure and ambient temperature. Moreover, a 2-Layer model is used for estimating the erosion performance of sweeps for design purposes, and the model estimations are compared with experimental results. From the experiments, it was identified that polymeric, oil and synthetic based muds with similar density and rheological properties eroded and transported the drilled cuttings similarly under similar test conditions. Furthermore, pumping the sweep pills in tandem demonstrated higher cuttings transport efficiency when compared with the sweep pills applied independently.


2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Edgar Echevarria

Abstract In the Middle East many of the matured fields have fractured or vugular formations where the drilling is continued without return to a surface. This situation has been commonly interpreted as lack of hole cleaning and high risk of stuck pipe. The manuscript describes a study performed to analyze the hole cleaning while blind drilling horizontal sections. Most of the losses while drilling across fractured or vugular formations happen sudden, and this represents a risk of formation instability and stuck pipe. Additionally, the cuttings accumulation may lead to a potential pack off. To understand the hole cleaning the annular pressure while drilling was introduced in different sections, what via change of the equivalent static and dynamic densities describes the cutting and cavings accumulation in the annulus. Additionally, the hole cleaning behavior with different fluids pumped through the drillstring (i.e. drilling fluid, water, water with sweeps) was studied. The proposed study was performed in 4 different fields, 9 wells, across horizontal 6⅛-in. sections with total lost circulation. It was identified that while drilling with full returns ECD vs ESD variations are within 1.5 ppg, those variations are matching with the modeling of hydraulics. Once total losses encountered the variations between ECD and ESD are very low - within 0.2 ppg - indicating that annular friction losses below the loss circulation zone are minimal. This support the theory that all the drilled cuttings are properly lifted from bottom and carried to the karst into the loss circulation zone and not fluctuating above the loss zone. Additionally, minor to no relation found in hole cleaning while drilling with mud or a water with sweeps. This finding also is aligned with the stuck pipe statistics that shows higher incidents of stuck pipe while drilling the with full circulation due to pack off. The manuscript confirms the theory of the hole cleaning in total lost circulation and application of different hole cleaning practices to improve it. The results of the study can be implemented in any project worldwide.


2021 ◽  
pp. 1-11
Author(s):  
Ahmed K. Abbas ◽  
Mortadha T. Alsaba ◽  
Mohammed F. Al Dushaishi

Abstract Extended reach (ERD) wells with a horizontal and highly deviated section are widely applied in the oil and gas industry because they provide higher drainage area than vertical wells; and hence, increase the productivity or injectivity of the well. Among many issues encountered in a complex well trajectory, poor hole cleaning is the most common problem, which occurs mainly in the deviated and horizontal section of oil and gas wells. There are significant parameters that have a serious impact on hole cleaning performance in high-angle and horizontal sections. These include flow rate, rheology and density of the drilling fluid, drillstring eccentricity, pipe rotation, and cuttings size. It has been recognized that the action of most of these parameters to transport drilled cuttings is constantly a point of controversy among oilfield engineers. In the present study, extensive experiments were conducted in an advanced purpose-built flow rig to identify the main parameters affecting on circulate the cuttings out of the test section in a horizontal position. The flow-loop simulator has been designed to allow easy variation of operational parameters in terms of flow rate, mud density, drillstring eccentricity, pipe rotation, and cuttings size. In addition, the study covers the impacts of laminar, transition, and turbulent flow regimes. The goal of such variation in the operational conditions is to simulate real field situations. The results have shown that drill string rotation and flow rate were the operational parameters with the highest positive influence on the cuttings transports process. In contrast, drill pipe eccentricity has a negative influence on cuttings removal efficiency. The cuttings transportation performance is further improved by pipe rotation at different levels of eccentricity, especially at fully eccentric annuli. It was also shown that larger cuttings appeared to be easier to remove in a horizontal annulus than smaller ones. The experimental results would provide a more in-depth understanding of the relationship between drilling operation parameters and hole cleaning efficiency in ERD operations. This will help the drilling teams to realize what action is better to take for efficient cutting transportation.


2015 ◽  
Author(s):  
Mike Okot ◽  
Marlio Campos ◽  
German Muñoz ◽  
Alawi G Alalsayednassir ◽  
Matt Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document