Automatic Measurement of the Dependence on Pressure and Temperature of the Mass Density of Drilling Fluids

2021 ◽  
Author(s):  
Eric Cayeux

Abstract Drilling fluids are subjected to large variations of pressure and temperature while they are circulated in a well. This span of pressures and temperatures is so large that the mass density of the drilling mud differs from one depth to another. For a precise estimation of the hydrostatic and hydrodynamic pressures, it is therefore important to have a good estimation of the pressure and temperature dependence of the mass density of drilling fluids. Usually, the mass density of drilling fluids is manually measured with a mud balance. The pressure and temperature dependence of the mass density of the fluid, i.e. its PVT behavior, is then estimated based on the PVT behavior of its components and their relative proportions. However, variations in the composition of the fluid mix and uncertainties on the PVT behavior of each components, may lead to inaccuracies. To circumvent these limitations, an apparatus that measures directly and automatically the PVT behavior of the drilling fluid contained in a pit has been designed. The setup measures both the mass density and the speed of sound in the fluid at specific conditions of pressure and temperature. From the speed of sound in the liquid mix, it is possible to estimate the adiabatic compressibility. The device also utilizes a heat exchanger from which the thermal conductivity and specific heat capacity of the drilling fluid can be estimated. Combining the specific heat capacity, thermal conductivity and the adiabatic compressibility, the isothermal compressibility can be calculated. By combining measurements made at different conditions of pressure and temperature, a PVT model of the drilling fluid is estimated. By providing automatically, and on a continuous basis, the actual PVT behavior of drilling fluids, drilling automation systems can gain in precision and at the same time, their configuration can be simplified, therefore making them more accessible to any drilling operation.

2021 ◽  
Vol 73 (11) ◽  
pp. 55-56
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 204084, “Automatic Measurement of the Dependence on Pressure and Temperature of the Mass Density of Drilling Fluids,” by Eric Cayeux, SPE, NORCE, prepared for the 2021 SPE/IADC International Drilling Conference and Exhibition, originally scheduled to be held in Stavanger, 9–11 March. The paper has not been peer reviewed. The mass density of drilling fluids usually is measured manually with a mud balance. The pressure and temperature dependence of the mass density of the fluid [i.e. its pressure/volume/temperature (PVT) behavior] then is estimated. Variations in the composition of the fluid mix and uncertainties regarding the PVT behavior of each component, however, may lead to inaccuracies. An apparatus that measures the PVT behavior of the drilling fluid contained in a pit directly and automatically has been designed. Inline PVT Measurement The pressure and temperature dependence of drilling fluids can be described by a biquadratic function. However, API Recommended Practice 13D recommends using a linear function of temperature combined with a quadratic form of pressure. Because this process involves six parameters, at least six measurements must be made under different conditions of pressure and temperature. A starting point is to measure the mass density of the fluid under six different pairs of pressures and temperatures. To keep the design of the apparatus as simple as possible, it ideally would not operate under high-pressure and -temperature conditions. Therefore, knowing the range of pressures and temperatures sufficient for taking sample measurements is useful in order to be able to extrapolate the model at higher pressure and temperature conditions with acceptable accuracy. The densitometer’s measurement precision of 0.05 kg/m3 and repeatability of 0.01 kg/m3 is known, so stochastic simulations of the possible measurement error for various spans of investigated pressures and temperatures can be performed. In this study, the authors con-sider that the calibrated PVT model shall be used for a range of pressure of 1000 bar and a range of temperature of 200°C. It is possible to calculate the root mean square of the proportion error between the predicted density value and the “true” value when varying stochastically the systematic bias on the density measurement when the calibration samples are spanning small ranges of pressure and temperature. A possible design for an inline apparatus could be to pump the drilling fluid past a controllable heating element and having a controllable choke downstream of the densitometer apply a pressure while measuring the mass density. The setpoints for the heating element and the choke would be changed six times in order to collect the necessary mass densities to calibrate the PVT model. Changing the temperature of the heating element, however, can require several minutes, and gathering a complete set of calibration measurements may easily take 15 to 30 minutes. An alternative could be to perform six measurements simultaneously. The densitometers can be mounted in series. The configuration could be with six parallel branches or any combinations between series and parallel branches. With two parallel branches, in one branch the temperature of the fluid is not modified, while it is modified in the second branch. For each of the two branches, back pressure is applied at two intermediate positions. This configuration has the advantage of using fewer chokes and pressure sensors (four instead of five).


Author(s):  
Erfan Veisi ◽  
Mastaneh Hajipour ◽  
Ebrahim Biniaz Delijani

Cooling the drill bit is one of the major functions of drilling fluids, especially in high temperature deep drilling operations. Designing stable drilling fluids with proper thermal properties is a great challenge. Identifying appropriate additives for the drilling fluid can mitigate drill-bit erosion or deformation caused by induced thermal stress. The unique advantages of nanoparticles may enhance thermal characteristics of drilling fluids. The impacts of nanoparticles on the specific heat capacity, thermal conductivity, rheological, and filtration control characteristics of water‐based drilling fluids were experimentally investigated and compared in this study. Al2O3, CuO, and Cu nanoparticles were used to prepare the water-based drilling nanofluid samples with various concentrations, using the two-step method. Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) were utilized to study the nanoparticle samples. The nanofluids stability and particle size distribution were, furthermore, examined using Dynamic Light Scattering (DLS). The experimental results indicated that thermal and rheological characteristics are enhanced in the presence of nanoparticles. The best enhancement in drilling fluid heat capacity and thermal conductivity was obtained as 15.6% and 12%, respectively by adding 0.9 wt% Cu nanoparticles. Furthermore, significant improvement was observed in the rheological characteristics such as the apparent and plastic viscosities, yield point, and gel strength of the drilling nanofluids compared to the base drilling fluid. Addition of nanoparticles resulted in reduced fluid loss and formation damage. The permeability of filter cakes decreased with increasing the nanoparticles concentration, but no significant effect in filter cake thickness was observed. The results reveal that the application of nanoparticles may reduce drill-bit replacement costs by improving the thermal and drilling fluid rheological characteristics and decrease the formation damage due to mud filtrate invasion.


2021 ◽  
Vol 63 (6) ◽  
pp. 763
Author(s):  
Р.Г. Митаров ◽  
С.Н. Каллаев ◽  
З.М. Омаров ◽  
О.М. Назарова ◽  
Л.А. Резниченко

The temperature dependence of the heat capacity of the multiferroics BiFeO3, Bi0.90Sm0.10FeO3, and Bi0.90Eu0.10FeO3 has been studied. It was found that the substitution of europium and samarium ions for bismuth ions in bismuth ferrite leads to the appearance of an additional heat capacity component due to transitions of 4f - electrons of rare earth ions to higher levels of the multiplet. A connection is established between the decrease in phonon thermal conductivity and the Schottky effect for the specific heat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abayomi A. Akinwande ◽  
Adeolu A. Adediran ◽  
Oluwatosin A. Balogun ◽  
Oluwaseyi S. Olusoju ◽  
Olanrewaju S. Adesina

AbstractIn a bid to develop paper bricks as alternative masonry units, unmodified banana fibers (UMBF) and alkaline (1 Molar aqueous sodium hydroxide) modified banana fibers (AMBF), fine sand, and ordinary Portland cement were blended with waste paper pulp. The fibers were introduced in varying proportions of 0, 0.5, 1.0 1.5, 2.0, and 2.5 wt% (by weight of the pulp) and curing was done for 28 and 56 days. Properties such as water and moisture absorption, compressive, flexural, and splitting tensile strengths, thermal conductivity, and specific heat capacity were appraised. The outcome of the examinations carried out revealed that water absorption rose with fiber loading while AMBF reinforced samples absorbed lesser water volume than UMBF reinforced samples; a feat occasioned by alkaline treatment of banana fiber. Moisture absorption increased with paper bricks doped with UMBF, while in the case of AMBF-paper bricks, property value was noted to depreciate with increment in AMBF proportion. Fiber loading resulted in improvement of compressive, flexural, and splitting tensile strengths and it was noted that AMBF reinforced samples performed better. The result of the thermal test showed that incorporation of UMBF led to depreciation in thermal conductivity while AMBF infusion in the bricks initiated increment in value. Opposite behaviour was observed for specific heat capacity as UMBF enhanced heat capacity while AMBF led to depreciation. Experimental trend analysis carried out indicates that curing length and alkaline modification of fiber were effective in maximizing the properties of paperbricks for masonry construction.


2021 ◽  
Author(s):  
Ermeng Zhao ◽  
Jian Hou ◽  
Yunkai Ji ◽  
Lu Liu ◽  
Yongge Liu ◽  
...  

Abstract Natural gas hydrate is widely distributed in the permafrost and marine deposits, and is regarded as an energy resource with great potential. The low-frequency electric heating assisted depressurization (LF-EHAD) has been proven to be an efficient method for exploiting hydrate sediments, which involves complex multi-physics processes, i.e. current conduction, multiphase flow, chemical reaction and heat transfer. The physical properties vary greatly in different hydrate sediments, which may profoundly affect the hydrate decomposition in the LF-EHAD process. In order to evaluate the influence of hydrate-bearing sediment properties on the gas production behavior and energy utilization efficiency of the LF-EHAD method, a geological model was first established based on the data of hydrate sediments in the Shenhu Area. Then, the influence of permeability, porosity, thermal conductivity, specific heat capacity, hydrate saturation and hydrate-bearing layer (HBL) thickness on gas production behavior is comprehensively analyzed by numerical simulation method. Finally, the energy efficiency ratio under different sediment properties is compared. Results indicate that higher gas production is obtained in the high-permeability hydrate sediments during depressurization. However, after the electric heating is implemented, the gas production first increases and then tends to be insensitive as the permeability decreases. With the increasing of porosity, the gas production during depressurization decreases due to the low effective permeability; while in the electric heating stage, this effect is reversed. High thermal conductivity is beneficial to enhance the heat conduction, thus promoting the hydrate decomposition. During depressurization, the gas production is enhanced with the increase of specific heat capacity. However, more heat is consumed to increase the reservoir temperature during electric heating, thereby reducing the gas production. High hydrate saturation is not conducive to depressurization because of the low effective permeability. After electric heating, the gas production increases significantly. High HBL thickness results in a higher gas production during depressurization, while in the electric heating stage, the gas production first increases and then remains unchanged with the increase of thickness, due to the limited heat supply. The comparison results of energy efficiency suggest that electric heating is more advantageous for hydrate sediments with low permeability, high porosity, high thermal conductivity, low specific heat capacity, high hydrate saturation and high HBL thickness. The findings in this work can provide a useful reference for evaluating the application of the LF-EHAD method in gas hydrate sediments.


Author(s):  
Yener Usul ◽  
Mustafa Özçatalbaş

Abstract Increasing demand for usage of electronics intensely in narrow enclosures necessitates accurate thermal analyses to be performed. Conduction based FEM (Finite Element Method) is a common and practical way to examine the thermal behavior of an electronic system. First step to perform a numerical analysis for any system is to set up the correct analysis model. In this paper, a method for obtaining the coefficient of thermal conductivity and specific heat capacity of a PCB which has generally a complex composite layup structure composed of conductive layers, and dielectric layers. In the study, above mentioned properties are obtained performing a simple nondestructive experiment and a numerical analysis. In the method, a small portion of PCB is sandwiched from one side at certain pressure by jaws. A couple of linear temperature profiles are applied to the jaws successively. Unknown values are tuned in the analysis model until the results of FEM analysis and experiment match. The values for the coefficient of thermal conductivity and specific heat capacity which the experiment and numerical analysis results match can be said to be the actual values. From this point on, the PCB whose thermal properties are determined can be analyzed numerically for any desired geometry and boundary condition.


Sign in / Sign up

Export Citation Format

Share Document