Implementation of TAML Level#4 Multilateral with Gravel Packed Lateral Leg to Solve Field Production Challenges

2021 ◽  
Author(s):  
Jin Li ◽  
Kunjian Wang ◽  
HaiNing Chen ◽  
Nigel Ruescher ◽  
Ruicheng Pang ◽  
...  

Abstract An offshore oil field in China was experiencing production challenges due to high water cut and low overall production. In order to boost production and address these challenges, adjacent reservoirs would need to be accessed and developed. Application of multilateral completion technology was considered the best method to achieve this, saving platform slots, increasing reservoir contact and keeling development cost low. An integrated solution was provided that allowed Technology Advancement Multilateral (TAML) Level#4 Multilateral Junctions with Gravel Packed Lateral sections, the first application of this type in China. The existing mainbore was temporarily isolated. Casing Exit was conducted at designated setting, and Hook Hanger TAML Level#4 Multilateral junction system was successfully installed and cemented. The horizontal Lateral bore was subsequently entered and gravel pack operations were successfully performed. Hydraulic integrity along well string is key to successful horizontal open hole gravel pack(OHGP). This TAML level#4 Multilateral completion design provided hydraulic integrity at junction during the whole OHGP process, the key to successful gravel pack. The mainbore can be restored as required. This paper concentrates on the technology utilized to successfully complete these wells. Multilateral and Gravel Pack equipment, challenges and solutions that were deployed to make this project a success are outlined. Three old wells in the field have applied this technology and have successfully improved production by 200m3/d. The wells give ability to selectively produce or comingle, allowing more flexibility with production. The introduction of Gravel Pack into the lateral affords greater sand control capabilities and ultimately assists overall production in well life. This application is now field proven with demonstrated production benefits and has potential for implementation in more developments in the region in future.

2021 ◽  
Author(s):  
Hongfu Shi ◽  
Yingxian Liu ◽  
Lifu Jiang ◽  
Jingding Zheng ◽  
Liqin Gan

Abstract Abundant faults, long oil-bearing intervals (up to 500m), and diverse fluids including conventional oil and heavy oil, result in P oilfield became one of the most complex oil fields in the Bohai Bay. The main characters ofinitial development plan are directional well with commingle production, open hole completion, large draw down, high oil production rate, and reverse nine-point well pattern. At present, the oilfield has entered a stage of high water cut, with average water cut more than 85%. What can we do next, decommissioning or rebirthing? An integrated solution was proposed to redevelop the oilfield which focus on the layers’ subdivision, the fine description of the sand body,a large number of horizontal wells on the top of the water-flooded layer are used to tap the potential, increase the water injector to transform the stream lines and rebuild the reservoir pressure, and search for potential sand bodies to increase reserves.


2013 ◽  
Vol 803 ◽  
pp. 383-386
Author(s):  
Shu Ren Yang ◽  
Di Xu ◽  
Chao Yu ◽  
Jia Wei Fan ◽  
Cheng Chu Yue Fu

In order to solve the problem of high water cut wells in some oil field in Daqing that it could not get the large-scale application because of the bad separating effect of down hole centrifugal oil-water separator, we optimize the design of multi-cup uniform flux oil-water separator according to the similar separation principle of multi-cup uniform flux gas anchor, and it is obtained to achieve of injection-production technology in the same well which is of high water cut. The design concept of the separator is increasing the number of opening every layer and aperture gradually in subsection from up to down in the design process. The purpose is to get the close intake quantity of every orifice and guarantee the residence time is long enough in the separator, effectively shorten the length of down hole oil-water separator and reduce the production costs and operating costs.


2013 ◽  
Vol 868 ◽  
pp. 645-650
Author(s):  
Lin Li

The parameters of reservoir impact all the sectors of oilfield developing after flood development, so methods of separate stratum injection allocation are researched for forecasting the petroleum reservoir performance accurately. The methods of separate stratum injection allocation are significative for remaining oil distribution, injection allocation of interval and the level of exploitation and administration in high water cut stage. First, we should derive injection-withdrawal ratio (IWR), gradient of pressure and water cut by material balance equation.The injection allocation of single well,injection wells and property of interval are determined by the research of split coefficient.We find the reservoir small error, lower water cut, high degree of reservoir recovery by anaysising the results of separate stratum injection allocation.The results show that separate stratum injection allocation is scientific and reasonable, simple and applied for the oil field in high water cut stage.


ICPTT 2009 ◽  
2009 ◽  
Author(s):  
ChengTing Liu ◽  
Zhao Yang ◽  
Han Qu

2021 ◽  
Author(s):  
Truong Nguyen Huu

Abstract In the past decades, most oil explotation in the White Tiger oil field was produced from the basement reservoir. However, in recent years, these pay zones consist of basement reservoirs, Oligocene reservoirs, and Miocene reservoirs of which oil field s have been declined in oil production rate due to several issues such as complex fracture network, high heterogeneity formation, high water cut, and the reduction of reservoir pressure. The huge issues in the most production wells at basement reservoir were high water cut and it has been significantly increasing during oil production yearly. Therefore, the total amount of oil production in all pay zones sharply decreased with time. At present, the lower Miocene reservoir is one of the best tight oil reservoirs to produce oil extractrion. The lower Miocene reservoir has been faced some issues such as high heterogeneity, complex structure, catastrophic clay swelling, low connectivity among the fractures, low effective wellbore radius and the reservoir that is hig h temperature up to 120°C, the closure pressure up to 6680psi, reservoir pressure up to 4500 psi, reservoir depth up to 3000m. Another reason low conductivity consists of both low reservoir porosity ranging from 1% of the hard shale to 10% of the sandstone formation, and the low permeability raining from 1md to 10md. By considering the various recovery methods, the integrated hydraulic fracturing stimulation is the best tool to successfully stimulate this reservoir, which method allows an increase in oil production rate. In the post fractured well has been shown an increase in productivity over 3 folds in comparison with the base case with fracture half-length nearly 75m, and fracture conductivity about 5400md.ft, which production rate is higher than the production rate of the base case. In addition, the proppant mass is used of 133,067 lbs of which the first main stage is to pump sinter lite bauxite proppant type of 20/40 into the fractures and the next big stage is to pump sintered ball bauxite proppant size of 16/30 into the fractures, which not only isolate proppant flow back but also increase fracture conductivity at the near wellbore as wel as high productivity rate after fractured well. To improve proppant transport, fract uring fluid systems consist of Guar polymer concentration of 11.2 pptg with these additives to form a total leak-off coefficient of 0.00227 ft/min0.5.


2010 ◽  
Author(s):  
Limin Zhao ◽  
Yang Liu ◽  
Dezhi Bian ◽  
Xianghong Wu ◽  
Wei Li ◽  
...  

2014 ◽  
Vol 900 ◽  
pp. 677-680
Author(s):  
Chun Hong Nie

This paper has discussed the characteristics, roles, feasibility and obvious effects of the technology by applying electric field to enhance oil recovery when the oil field is in high water cut stage and super high water cut stage. In view that most oil wells in old oil field have entered into the super high water cut production, the remaining oil in the main reservoir is in fragmented distribution with poor results of water injection and new reserves of oil mostly have a low penetration rate and are thin layers of poor physical properties, the use of the direct current field in period of high water cut is the best policy to achieve high and stable yield and is fairly promising.


2012 ◽  
Vol 594-597 ◽  
pp. 2475-2480
Author(s):  
Gui Xue Qi ◽  
Hai Xia Zhang ◽  
Mian Long ◽  
Jun Qin ◽  
Ji Cheng Zhang

Nowadays, in China nearly all the produced oil-fields have already entered the period of high water cut, and the six oil-fields of Daqing and Shengli oil-field etc. have exceeded eighty percent water cut. Beierdong Block has produced for nearly fifty years, and now it has entered into the descending output stage and its water cut has reached more than ninety percent. With oil field infill gradually in Beierdong Block, each series of well network production target getting worse gradually, intersecting with old well network stratigraphic position, and polymer flooding well network use part of water driving old well, making the contradictory of layer well network concatenate and dynamic regulation intensely. Especially as the block of infill adjustment proceeded earliest, acquired better developed effect at the beginning of regulation, but with the deep development of the field, after the phase of extra high water cut, exposed gradually some problems such as the perforating interval is too long, the contradiction of interlamination is obvious, the high water cut of multilayer is serious, bringing huge difficulty to dynamic analysis regulation.Basing on layer recombination and using the reservoir simulation method, the paper studied the distribution of remaining oil, forecast variation regular pattern of development indexes. By contrasting these indexes, the paper estimates the effect of layer recombination. It has important significance for the next period’s development.


2021 ◽  
Author(s):  
An Jiang ◽  
Yunpeng Li ◽  
Xing Liu ◽  
Fengli Zhang ◽  
Tianhui Wang ◽  
...  

Abstract Objectives/Scope Controlling the excessive water production from the high water cut gravel packing horizontal well is a challenge. The approach which uses regular packers or packers with ICD screens to control the unwanted water does not function well. This is mainly because of the length limitation of packers which will make the axial flow resistance insufficient. Methods, Procedures, Process In this paper, a successful case that unwanted water is shutoff by using continuous pack-off particles with ICD screens (CPI) in the whole horizontal section in an offshore oilfield of Bohai bay is presented. The reservoir of this case is the bottom-water high viscosity reservoir. The process is to run 2 3/8" ICD screen string into the 4" screen string originally in place, then to pump the pack-off particles into the annulus between the two screens, and finally form the 360m tightly compacted continuous pack-off particle ring. Results, Observations, Conclusions The methodology behind the process is that the 2-3/8" ICD screens limit the flow rate into the pipes as well as the continuous pack-off particle ring together with the gravel ring outside the original 4" screens to prevent the water channeling into the oil zone along the horizontal section. This is the first time this process is applied in a high water cut gravel packed horizontal well. After the treatment, the water rate decreased from 6856BPD to 836.6BPD, the oil rate increased from 44BPD to 276.8BPD. In addition, the duration of this performance continued a half year until March 21, 2020. Novel/Additive Information The key of this technology is to control the unwanted water by using the continuous pack-off particles instead of the parkers, which will bring 5 advantages, a) higher efficiency in utilizing the production interval; b) no need to find the water source and then fix it; c) the better ability to limit the axial flow; d) effective to multi-WBT (water break though) points and potential WBT points; e) more flexible for further workover. The technology of this successful water preventing case can be reference to other similar high water cut gravel packed wells. Also, it has been proved that the well completion approach of using CPI can have good water shutoff and oil incremental result. Considering the experiences of historical applications, CPI which features good sand control, water shutoff and anti-clogging is a big progress compared to the current completion technologies.


Sign in / Sign up

Export Citation Format

Share Document