Long Term Production Strategy - Application of a Dynamically Integrated Reservoir and Production Model to Identify Compression Requirements and to Address Production Deferral in a Giant Gas Field

2021 ◽  
Author(s):  
Ayesha Ahmed Abdulla Salem Alsaeedi ◽  
Eduard Latypov ◽  
Manar Elabrashy ◽  
Mohamed Alzeyoudi ◽  
Ammar Al-Ameri ◽  
...  

Abstract There are several operational challenges associated with a gas field producing in recycle or depletion mode, including a reasonable forecast and a robust production strategy planning. The complex reservoir dynamics further demands faster and reasonable analysis and decision-making. This paper discusses an all-inclusive integrated modeling approach to devise a production strategy incorporating the detailed compressor design requirements to ensure that a consistent production-stream is available in the long-term considering technical and economic aspects. The proposed production strategy is a two-fold approach. In the first step, the process utilizes the current reservoir simulation data in the production-forecast model. This history matched model captures the reservoir dynamics such as reservoir pressure decline and accounts for future wells drilling-requirements. However, the detailed production hydraulics in wellbore and surface facilities is not captured in the model. Further, to consider the declining well-performance and facility bottlenecks, integrated analysis is required. So, in the second step, the reservoir simulation model is dynamically integrated to take the input from the production model, encompassing detailed well and surface facility digital twins. The continuous interaction provides a highly reliable production profile that can be used to produce a production strategy of compressor design for the future. A strong interactive user-interface in the digital platform enables the user to configure various what-if scenarios efficiently, considering all anticipated future events and production conditions. The major output of the process was the accurate identification of the pressure-profile at multiple surface facility locations over the course of the production. Using the business-plan, field development strategy, production-profile, and the reservoir simulation output, reliable pressure-profiles were obtained, giving an indication of the declining pressures at gathering manifold over time. A well level production-profile-forecast helped in prioritizing wells for rerouting as well as workover requirements. As an outcome of this study, several manifolds were identified that are susceptible to high-pressure decline caused by declining reservoir pressures. To capture this pressure decline, a compressor mechanism was put in place to transfer the fluid to its delivery point. As this study utilizes several timesteps for the production forecast estimation, flexible routine options are also provided to the engineers to ensure that backpressure is minimized to avoid a larger back pressure on the wells for quick gains. This solution improves the efficiency of the previous approaches that were entirely relying on the reservoir simulation model to capture the pressure decline at the wellhead to forecast the compressor needs. In this methodology, the pressure profile at each node was captured to simulate a real production scenario. This holistic approach is in line with Operator's business plan strategy to identify the needs of external energy-source to avoid production-deferral.

Author(s):  
Anita Theresa Panjaitan ◽  
Rachmat Sudibjo ◽  
Sri Fenny

<p>Y Field which located around 28 km south east of Jakarta was discovered in 1989. Three wells have been drilled and suspended. The initial gas ini place (IGIP) of the field is 40.53 BSCF. The field will be developed in 2011. In this study, reservoir simulation model was made to predict the optimum development strategy of the field. This model consisted of 1,575,064 grid cells which were built in a black oil simulator. Two field development scenarios were defined with and without compressor. Simulation results show that the Recovery Factor at thel end of the contract is 61.40% and 62.14% respectively for Scenarios I and II without compressor. When compressor is applied then Recovey Factor of Scenarios I and II is 68.78% and 74.58%, correspondingly. Based on the economic parameters, Scenario II with compressor is the most <br />attractive case, where IRR, POT, and NPV of the scenario are 41%, 2.9 years, and 14,808 MUS$.</p>


2018 ◽  
Vol 6 (3) ◽  
pp. T601-T611
Author(s):  
Juliana Maia Carvalho dos Santos ◽  
Alessandra Davolio ◽  
Denis Jose Schiozer ◽  
Colin MacBeth

Time-lapse (or 4D) seismic attributes are extensively used as inputs to history matching workflows. However, this integration can potentially bring problems if performed incorrectly. Some of the uncertainties regarding seismic acquisition, processing, and interpretation can be inadvertently incorporated into the reservoir simulation model yielding an erroneous production forecast. Very often, the information provided by 4D seismic can be noisy or ambiguous. For this reason, it is necessary to estimate the level of confidence on the data prior to its transfer to the simulation model process. The methodology presented in this paper aims to diagnose which information from 4D seismic that we are confident enough to include in the model. Two passes of seismic interpretation are proposed: the first, intended to understand the character and quality of the seismic data and, the second, to compare the simulation-to-seismic synthetic response with the observed seismic signal. The methodology is applied to the Norne field benchmark case in which we find several examples of inconsistencies between the synthetic and real responses and we evaluate whether these are caused by a simulation model inaccuracy or by uncertainties in the actual observed seismic. After a careful qualitative and semiquantitative analysis, the confidence level of the interpretation is determined. Simulation model updates can be suggested according to the outcome from this analysis. The main contribution of this work is to introduce a diagnostic step that classifies the seismic interpretation reliability considering the uncertainties inherent in these data. The results indicate that a medium to high interpretation confidence can be achieved even for poorly repeated data.


2013 ◽  
Vol 694-697 ◽  
pp. 3446-3452 ◽  
Author(s):  
Horng Huei Wu ◽  
Ming Feng Li ◽  
Tzu Fang Hsu

The LED chip manufacturing (LED-CM) is an important process in the LED supply chain. The make-to-order production strategy is a general production model for the LED-CM plants to satisfy the variety requirement of their customers. However, the special features of the unstable production output and a product composed of the chips of different feasible Bins exist in the LED-CM plant. The production planner will confront the issue of effective inventory control and exact due-date performance under the severely competitive pressure. Therefore an effective order fulfillment procedure for production planners is a required key issue to accomplish the inventory control and exact due-date performance. An order fulfillment model for production planner is thus proposed in this paper to meet the requirement of the LED-CM plants. A real-life LED-CM case is also utilized to demonstrate and evaluate the application and effectiveness of the proposed model.


2021 ◽  
Author(s):  
Oleksandr Doroshenko ◽  
Miljenko Cimic ◽  
Nicholas Singh ◽  
Yevhen Machuzhak

Abstract A fully integrated production model (IPM) has been implemented in the Sakhalin field to optimize hydrocarbons production and carried out effective field development. To achieve our goal in optimizing production, a strategy has been accurately executed to align the surface facilities upgrade with the production forecast. The main challenges to achieving the goal, that we have faced were:All facilities were designed for early production stage in late 1980's, and as the asset outdated the pipeline sizes, routing and compression strategies needs review.Detecting, predicting and reducing liquid loading is required so that the operator can proactively control the hydrocarbon production process.No integrated asset model exists to date. The most significant engineering tasks were solved by creating models of reservoirs, wells and surface network facility, and after history matching and connecting all the elements of the model into a single environment, it has been used for the different production forecast scenarios, taking into account the impact of infrastructure bottlenecks on production of each well. This paper describes in detail methodology applied to calculate optimal well control, wellhead pressure, pressure at the inlet of the booster compressor, as well as for improving surface flowlines capacity. Using the model, we determined the compressor capacity required for the next more than ten years and assessed the impact of pipeline upgrades on oil gas and condensate production. Using optimization algorithms, a realistic scenario was set and used as a basis for maximizing hydrocarbon production. Integrated production model (IPM) and production optimization provided to us several development scenarios to achieve target production at the lowest cost by eliminating infrastructure constraints.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2409-2427 ◽  
Author(s):  
Zhenyu Guo ◽  
Albert C. Reynolds

Summary We design a new and general work flow for efficient estimation of the optimal well controls for the robust production-optimization problem using support-vector regression (SVR), where the cost function is the net present value (NPV). Given a set of simulation results, an SVR model is built as a proxy to approximate a reservoir-simulation model, and then the estimated optimal controls are found by maximizing NPV using the SVR proxy as the forward model. The gradient of the SVR model can be computed analytically so the steepest-ascent algorithm can easily and efficiently be applied to maximize NPV. Then, the well-control optimization is performed using an SVR model as the forward model with a steepest-ascent algorithm. To the best of our knowledge, this is the first SVR application to the optimal well-control problem. We provide insight and information on proper training of the SVR proxy for life-cycle production optimization. In particular, we develop and implement a new iterative-sampling-refinement algorithm that is designed specifically to promote the accuracy of the SVR model for robust production optimization. One key observation that is important for reservoir optimization is that SVR produces a high-fidelity model near an optimal point, but at points far away, we only need SVR to produce reasonable approximations of the predicting output from the reservoir-simulation model. Because running an SVR model is computationally more efficient than running a full-scale reservoir-simulation model, the large computational cost spent on multiple forward-reservoir-simulation runs for robust optimization is significantly reduced by applying the proposed method. We compare the performance of the proposed method using the SVR runs with the popular stochastic simplex approximate gradient (StoSAG) and reservoir-simulations runs for three synthetic examples, including one field-scale example. We also compare the optimization performance of our proposed method with that obtained from a linear-response-surface model and multiple SVR proxies that are built for each of the geological models.


Sign in / Sign up

Export Citation Format

Share Document