Significance of Smart and Integration System Solutions in Maintaining Well Integrity

2021 ◽  
Author(s):  
Mohammed Mugharbil ◽  
Mohammed Al Khunaizi

Abstract Well integrity is one of the most critical elements for extending the producible life of a well. A healthy well enables optimization of productivity, enhanced oil recovery, trial tests of new technologies, and much more. Factors such as external corrosive aquifers, internal corrosion, corrosive hydrocarbons, cement bond damage, solids and sand production, and others are considered the main integrity dangers worldwide. When well integrity is affected, not only economic risks but also risks to health, environment and safety are probable. Well integrity is an objective achieved by optimum design and construction of the well after studying and assessing all possible hazards; effective monitoring of the well behavior while it's under production; and timely intervention when an integrity problem is detected. Evaluating all the aspects of well integrity during well operation is crucial. Cyclic surveillance is important to be followed, including wellhead pressures/annuli surveys, temperature surveys, corrosion logs, wellbore clearance, and well fluid samples, among other activities. With the help of smart and integrated systems, production engineers can have much better control over well integrity and be proactive in making timely decisions prior to any unforeseen events. The smart system keeps the well surveillance records, risk-rank the wells, and sets KPIs to tackle necessary actions wherever applicable. The developed system immediately triggers any threat on well integrity when it occurs.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4671 ◽  
Author(s):  
Oscar E. Medina ◽  
Carol Olmos ◽  
Sergio H. Lopera ◽  
Farid B. Cortés ◽  
Camilo A. Franco

The increasing demand for fossil fuels and the depleting of light crude oil in the next years generates the need to exploit heavy and unconventional crude oils. To face this challenge, the oil and gas industry has chosen the implementation of new technologies capable of improving the efficiency in the enhanced recovery oil (EOR) processes. In this context, the incorporation of nanotechnology through the development of nanoparticles and nanofluids to increase the productivity of heavy and extra-heavy crude oils has taken significant importance, mainly through thermal enhanced oil recovery (TEOR) processes. The main objective of this paper is to provide an overview of nanotechnology applied to oil recovery technologies with a focus on thermal methods, elaborating on the upgrading of the heavy and extra-heavy crude oils using nanomaterials from laboratory studies to field trial proposals. In detail, the introduction section contains general information about EOR processes, their weaknesses, and strengths, as well as an overview that promotes the application of nanotechnology. Besides, this review addresses the physicochemical properties of heavy and extra-heavy crude oils in Section 2. The interaction of nanoparticles with heavy fractions such as asphaltenes and resins, as well as the variables that can influence the adsorptive phenomenon are presented in detail in Section 3. This section also includes the effects of nanoparticles on the other relevant mechanisms in TEOR methods, such as viscosity changes, wettability alteration, and interfacial tension reduction. The catalytic effect influenced by the nanoparticles in the different thermal recovery processes is described in Sections 4, 5, 6, and 7. Finally, Sections 8 and 9 involve the description of an implementation plan of nanotechnology for the steam injection process, environmental impacts, and recent trends. Additionally, the review proposes critical stages in order to obtain a successful application of nanoparticles in thermal oil recovery processes.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 63-75
Author(s):  
Kamalakshi Devi ◽  
◽  
Ranjan Kumar Bhagobaty ◽  

Crude oil, a major source of energy, is being exploited as a driver of the economy throughout the world. Being a limited resource, the price of crude oil increases constantly and the exploitation of mature reservoirs becomes essential in order to meet the ever-increasing energy demands. As conventional recovery methods are not sufficient to fulfil the growing needs, there is an incessant demand for developing new technologies which can help in efficient tertiary recovery in old reservoirs. Petroleum biotechnology has been emerging as a branch that can provide solutions to major problems in the oil industry, including increasing oil production from marginal oil wells. The enhanced oil recovery (EOR) method comprises four methods – chemical, thermal, miscible, and immiscible gas flooding – as well as microbial interference to increase recovery of the remaining hydrocarbons trapped in reservoir rocks. Biochemically enhanced oil recovery comprises an array of blooming technologies for tertiary oil recovery methods which is eco-friendly, cost-effective, and efficient in extracting the residual oil trapped in reservoir rocks. Biochemical enhanced oil recovery (BcEOR) is based on the principle of using biochemical by-products produced by microbial species to enhance oil recovery, etc. All these technologies work on the principles of reducing viscosity, increasing permeability, modifying solid surfaces, emulsifying through adherence to hydrocarbons, and lowering interfacial tension. BcEOR technologies either employ the beneficial microorganism itself or the biochemical by-products produced by the microbial species to enhance tertiary oil recovery. This review paper discusses the chronological development of biologically enhanced oil recovery and its various mechanisms.


2020 ◽  
Author(s):  
Sudad H Al-Obaidi

The tasks of applying new technologies of oil production are urgent. These technologies must significantly be able to increase the oil recovery of already developed formations, where it is no longer possible to extract significant residual oil reserves by traditional methods. Among these technologies is the microbial enhanced oil recovery method (MEOR). It is a tertiary crude oil recovery technology that allows partial recovery of residual oil that cannot be recovered by primary and secondary methods, thereby extending the life of developed oil reservoirs. MEOR is based on the activation of reservoir microflora. A special group of hydrocarbon-oxidizing microorganisms is able to metabolize hydrocarbons, producing organic solvents such as alcohols and aldehydes, fatty acids with surface activity, gaseous products and other metabolites that increase the mobility of oil.


2021 ◽  
Vol 11 (5) ◽  
pp. 13432-13452

In recent years, research activity to increase oil recovery from hydrocarbon reservoirs by smart water (SW) injection has risen sharply. Smart water injection is one of the most efficient and low-cost methods in the improved and enhanced oil recovery (IOR/EOR) process. One of the active mechanisms of smart water to increase the oil production is wettability alteration of the rock surface from oil-wet to water-wet conditions. Recently smart water injection into unconsolidated sandstone reservoirs due to disturbance of the rock surface equilibrium causes instability of formation particles and sand production. One of the main factors disturbing the equilibrium and sand production is the sandstone surface's wettability alteration mechanism caused by disjoining pressure and stresses on the rock surface. Reduction of the reservoir permeability and closure of fluid flow paths and consequent reduction of oil production are among the main damages of sand production. In this study, a complete study on optimum smart water design based on the least sedimentation due to mixing has been done by formation water compatibility tests and analysis on divalent ions through the Taguchi design. Then the water wet sandstones were converted to oil-wet condition by model oil (stearic acid + normal heptane) in different concentrations. The wettability effect of water wet, neutral wet oil-wet on the amount of sand production in the presence of smart water in the reservoir conditions was fully investigated. To prevent sand production, a very effective chemical method of nanoparticles was used. By stabilizing silica nanoparticles (SiO2) with an optimum concentration of 2000 ppm in smart water (pH = 8), according to the results of the zeta potential and Dynamic light scattering (DLS) test, the effect of wettability on sand production in the presence of smart nanofluid was fully investigated. The test results show a significant reduction in sand production and a rapid wettability alteration towards smart nanofluids' water-wet conditions. This indicates the improvement of fluid for enhanced oil recovery processes in unconsolidated sandstone reservoirs.


Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


Sign in / Sign up

Export Citation Format

Share Document