A Single Artificial Neural Network Model Predicts Bubble Point Physical Properties of Crude Oils

2021 ◽  
Author(s):  
Muhammad Al-Marhoun

Abstract Reservoir fluid properties at bubble points play a vital role in reservoir and production engineering computations. Ideally, the bubble point physical properties of crude oils are obtained experimentally. On some occasions, these properties are neither available nor reliable; then, empirically derived correlations or artificial neural network models are used to predict the properties. This study presents a new single multi-input multi-output artificial neural network model for predicting the six bubble point physical properties of crude oils, namely, oil pressure, oil formation volume factor, isobaric thermal expansion of oil, isothermal compressibility of oil, oil density, and oil viscosity. A large database comprising conventional PVT laboratory reports was collected from major producing reservoirs in the Middle East. The model input is constrained mathematically to be consistent with the limiting values of the physical properties. The new model is represented in mathematical format to be easily used as empirical correlations. The new neural network model is compared with popular fluid property correlations. The results show that the developed model outperforms the fluid property correlations in terms of the average absolute percent relative error.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3042
Author(s):  
Sheng Jiang ◽  
Mansour Sharafisafa ◽  
Luming Shen

Pre-existing cracks and associated filling materials cause the significant heterogeneity of natural rocks and rock masses. The induced heterogeneity changes the rock properties. This paper targets the gap in the existing literature regarding the adopting of artificial neural network approaches to efficiently and accurately predict the influences of heterogeneity on the strength of 3D-printed rocks at different strain rates. Herein, rock heterogeneity is reflected by different pre-existing crack and filling material configurations, quantitatively defined by the crack number, initial crack orientation with loading axis, crack tip distance, and crack offset distance. The artificial neural network model can be trained, validated, and tested by finite 42 quasi-static and 42 dynamic Brazilian disc experimental tests to establish the relationship between the rock strength and heterogeneous parameters at different strain rates. The artificial neural network architecture, including the hidden layer number and transfer functions, is optimized by the corresponding parametric study. Once trained, the proposed artificial neural network model generates an excellent prediction accuracy for influences of high dimensional heterogeneous parameters and strain rate on rock strength. The sensitivity analysis indicates that strain rate is the most important physical quantity affecting the strength of heterogeneous rock.


Sign in / Sign up

Export Citation Format

Share Document