History to Prediction Transition Calibration of Reservoir Simulation Model Ensemble

2021 ◽  
Author(s):  
Bjørn Egil Ludvigsen ◽  
Mohan Sharma

Abstract Well performance calibration after history matching a reservoir simulation model ensures that the wells give realistic rates during the prediction phase. The calibration involves adjusting well model parameters to match observed production rates at specified backpressure(s). This process is usually very time consuming such that the traditional approaches using one reservoir model with hundreds of high productivity wells would take months to calibrate. The application of uncertainty-centric workflows for reservoir modeling and history matching results in many acceptable matches for phase rates and flowing bottom-hole pressure (BHP). This makes well calibration even more challenging for an ensemble of large number of simulation models, as the existing approaches are not scalable. It is known that Productivity Index (PI) integrates reservoir and well performance where most of the pressure drop happens in one to two grid blocks around well depending upon the model resolution. A workflow has been setup to fix transition by calibrating PI for each well in a history matched simulation model. Simulation PI can be modified by changing permeability-thickness (Kh), skin, or by applying PI multiplier as a correction. For a history matched ensemble with a range in water-cut and gas-oil ratio, the proposed workflow involves running flowing gradient calculations for a well corresponding to observed THP and simulated rates for different phases to calculate target BHP. A PI Multiplier is then calculated for that well and model that would shift simulation BHP to target BHP as local update to reduce the extent of jump. An ensemble of history matched models with a range in water-cut and gas-oil ratio have a variation in required BHPs unique to each case. With the well calibration performed correctly, the jump observed in rates while switching from history to prediction can be eliminated or significantly reduced. The prediction thus results in reliable rates if wells are run on pressure control and reliable plateau if the wells are run on group control. This reduces the risk of under/over-predicting ultimate hydrocarbon recovery from field and the project's cashflow. Also, this allows running sensitivities to backpressure, tubing design, and other equipment constraints to optimize reservoir performance and facilities design. The proposed workflow, which dynamically couple reservoir simulation and well performance modeling, takes a few seconds to run for a well, making it fit-for-purpose for a large ensemble of simulation models with a large number of wells.

2021 ◽  
Author(s):  
Xindan Wang ◽  
Cody Keith ◽  
Yin Zhang ◽  
Abhijit Dandekar ◽  
Samson Ning ◽  
...  

Abstract The first-ever polymer flood pilot to enhance heavy oil recovery on Alaska North Slope (ANS) is ongoing. After more than 2.5 years of polymer injection, significant benefit has been observed from the decrease in water cut from 65% to less than 15% in the project producers. The primary objective of this study is to develop a robust history-matched reservoir simulation model capable of predicting future polymer flood performance. In this work, the reservoir simulation model has been developed based on the geological model and available reservoir and fluid data. In particular, four high transmissibility strips were introduced to connect the injector-producer well pairs, simulating short-circuiting flow behavior that can be explained by viscous fingering and reproducing the water cut history. The strip transmissibilities were manually tuned to improve the history matching results during the waterflooding and polymer flooding periods, respectively. It has been found that higher strip transmissibilities match the sharp water cut increase very well in the waterflooding period. Then the strip transmissibilities need to be reduced with time to match the significant water cut reduction. The viscous fingering effect in the reservoir during waterflooding and the restoration of injection conformance during polymer flooding have been effectively represented. Based on the validated simulation model, numerical simulation tests have been conducted to investigate the oil recovery performance under different development strategies, with consideration for sensitivity to polymer parameter uncertainties. The oil recovery factor with polymer flooding can reach about 39% in 30 years, twice as much as forecasted with continued waterflooding. Besides, the updated reservoir model has been successfully employed to forecast polymer utilization, a valuable parameter to evaluate the pilot test’s economic efficiency. All the investigated development strategies indicate polymer utilization lower than 3.5 lbs/bbl in 30 years, which is economically attractive.


2015 ◽  
Vol 8 (1) ◽  
pp. 16-28 ◽  
Author(s):  
Liang-Biao Ouyang

Most of the current research and commercial reservoir simulators lack the capability to handle complex completion details like perforation tunnels in a simulation study. In most common applications, the simplified handling of completion complexity in reservoir simulations is not expected to introduce significant error in simulation results. However, it has been found that under certain circumstances, especially in high rate wells that have become more and more common in deepwater oil and profilic gas development, exclusion of the complex completion details in a reservoir simulation model would lead to nontrivial errors. New equations have been proposed to assess the needs to incorporate completion details in a reservoir simulation study based on the understanding of the fluid flow in a formation, the fluid flow along a wellbore and the fluid flow through perforation tunnels if exist. A series of sensitivity studies with different completion options under different flow and reservoir environments has been conducted to provide some guidance to improve well performance prediction through reservoir simulation. Impacts of key parameters like perforation density, perforation diameter, perforation length, wellbore length, borehole diameter, well completion configuration, well placement, reservoir permeability, reservoir heterogeneity, pressure drawdown, etc, have also been investigated.


2021 ◽  
Author(s):  
Xindan Wang ◽  
Yin Zhang ◽  
Abhijit Dandekar ◽  
Yudou Wang

Abstract Chemical flooding has been widely used to enhance oil recovery after conventional waterflooding. However, it is always a challenge to model chemical flooding accurately since many of the model parameters of the chemical flooding cannot be measured accurately in the lab and even some parameters cannot be obtained from the lab. Recently, the ensemble-based assisted history matching techniques have been proven to be efficient and effective in simultaneously estimating multiple model parameters. Therefore, this study validates the effectiveness of the ensemble-based method in estimating model parameters for chemical flooding simulation, and the half-iteration EnKF (HIEnKF) method has been employed to conduct the assisted history matching. In this work, five surfactantpolymer (SP) coreflooding experiments have been first conducted, and the corresponding core scale simulation models have been built to simulate the coreflooding experiments. Then the HIEnKF method has been applied to calibrate the core scale simulation models by assimilating the observed data including cumulative oil production and pressure drop from the corresponding coreflooding experiments. The HIEnKF method has been successively applied to simultaneously estimate multiple model parameters, including porosity and permeability fields, relative permeabilities, polymer viscosity curve, polymer adsorption curve, surfactant interfacial tension (IFT) curve and miscibility function curve, for the SP flooding simulation model. There exists a good agreement between the updated simulation results and observation data, indicating that the updated model parameters are appropriate to characterize the properties of the corresponding porous media and the fluid flow properties in it. At the same time, the effectiveness of the ensemble-based assisted history matching method in chemical enhanced oil recovery (EOR) simulation has been validated. Based on the validated simulation model, numerical simulation tests have been conducted to investigate the influence of injection schemes and operating parameters of SP flooding on the ultimate oil recovery performance. It has been found that the polymer concentration, surfactant concentration and slug size of SP flooding have a significant impact on oil recovery, and these parameters need to be optimized to achieve the maximum economic benefit.


2021 ◽  
Author(s):  
Mohamed Shams

Abstract This paper provides the field application of the bee colony optimization algorithm in assisting the history match of a real reservoir simulation model. Bee colony optimization algorithm is an optimization technique inspired by the natural optimization behavior shown by honeybees during searching for food. The way that honeybees search for food sources in the vicinity of their nest inspired computer science researchers to utilize and apply same principles to create optimization models and techniques. In this work the bee colony optimization mechanism is used as the optimization algorithm in the assisted the history matching workflow applied to a reservoir simulation model of WD-X field producing since 2004. The resultant history matched model is compared with with those obtained using one the most widely applied commercial AHM software tool. The results of this work indicate that using the bee colony algorithm as the optimization technique in the assisted history matching workflow provides noticeable enhancement in terms of match quality and time required to achieve a reasonable match.


2018 ◽  
Vol 6 (3) ◽  
pp. T601-T611
Author(s):  
Juliana Maia Carvalho dos Santos ◽  
Alessandra Davolio ◽  
Denis Jose Schiozer ◽  
Colin MacBeth

Time-lapse (or 4D) seismic attributes are extensively used as inputs to history matching workflows. However, this integration can potentially bring problems if performed incorrectly. Some of the uncertainties regarding seismic acquisition, processing, and interpretation can be inadvertently incorporated into the reservoir simulation model yielding an erroneous production forecast. Very often, the information provided by 4D seismic can be noisy or ambiguous. For this reason, it is necessary to estimate the level of confidence on the data prior to its transfer to the simulation model process. The methodology presented in this paper aims to diagnose which information from 4D seismic that we are confident enough to include in the model. Two passes of seismic interpretation are proposed: the first, intended to understand the character and quality of the seismic data and, the second, to compare the simulation-to-seismic synthetic response with the observed seismic signal. The methodology is applied to the Norne field benchmark case in which we find several examples of inconsistencies between the synthetic and real responses and we evaluate whether these are caused by a simulation model inaccuracy or by uncertainties in the actual observed seismic. After a careful qualitative and semiquantitative analysis, the confidence level of the interpretation is determined. Simulation model updates can be suggested according to the outcome from this analysis. The main contribution of this work is to introduce a diagnostic step that classifies the seismic interpretation reliability considering the uncertainties inherent in these data. The results indicate that a medium to high interpretation confidence can be achieved even for poorly repeated data.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 126 ◽  
Author(s):  
Shohreh Amini ◽  
Shahab Mohaghegh

Reservoir simulation models are the major tools for studying fluid flow behavior in hydrocarbon reservoirs. These models are constructed based on geological models, which are developed by integrating data from geology, geophysics, and petro-physics. As the complexity of a reservoir simulation model increases, so does the computation time. Therefore, to perform any comprehensive study which involves thousands of simulation runs, a very long period of time is required. Several efforts have been made to develop proxy models that can be used as a substitute for complex reservoir simulation models. These proxy models aim at generating the outputs of the numerical fluid flow models in a very short period of time. This research is focused on developing a proxy fluid flow model using artificial intelligence and machine learning techniques. In this work, the proxy model is developed for a real case CO2 sequestration project in which the objective is to evaluate the dynamic reservoir parameters (pressure, saturation, and CO2 mole fraction) under various CO2 injection scenarios. The data-driven model that is developed is able to generate pressure, saturation, and CO2 mole fraction throughout the reservoir with significantly less computational effort and considerably shorter period of time compared to the numerical reservoir simulation model.


Sign in / Sign up

Export Citation Format

Share Document