Deployment of Downhole Mechanics Measurement System and Drilling Dynamics Modelling to Enhance Overall Drilling Performance Under Complete Mud Losses Environment

2021 ◽  
Author(s):  
Edgar Echevarria Garnica ◽  
Gustavo Alves Moreira ◽  
Alexey Ruzhnikov

Abstract Drilling surface 16-in. and 12.25-in. sections in Middle East often accomplished by complete mud losses where downhole dynamic changed completely. To increase the performance and reduce drilling time the Positive Displace Motors (PDM) are used, however drilling under complete mud losses scenario may lead to a failure of the PDM, Measure While Drilling (MWD) tool, jar and any other components of the Bottom Hole Assembly (BHA). This manuscript describes the study of BHA dynamic in total loss scenario aiming to increase Rate of penetration (ROP) and decrease mechanical failures. The changing in drilling dynamics under complete mud losses increases the severity of shock and vibrations (S&V), BHA whirl and, consequently, leads to downhole failures. Local practices have been used to control this risk by taking an over conservative approach, limiting Weight on Bit (WOB) and Revolution per Minute (RPM) to very low levels, affecting overall performance. To comprehensively understand the level of shock and vibrations under complete mud losses based on the modeled data, a Downhole Mechanics Measurement (DMM) system was used in the BHA to acquire the required data in real time to confirm and further improve the modeling of drilling dynamics. A drilling schedule with several combinations of WOB and RPM was developed to cover the full drilling envelop. This study provided valuable understanding on the drilling dynamics while drilling under complete mud losses and allowed to clearly define the limiting boundaries to optimize ROP without jeopardizing the mechanical integrity of the BHA, particularly the PDM and drilling jar. On each formation drilled, RPM, WOB were changed to cover all possible combinations and, using the continuous real time measurement, ROP was optimized based on the level of shocks and vibrations experienced. Furthermore, the recorded mode Low and High-frequency data enabled to model the drilling dynamics and to quantify the effects of shocks and vibrations on the BHA. As a result, the wells have been drilled with significant ROP improvement (saving one day per run) and without downhole failures, achieving higher than expected performance results.

Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


2021 ◽  
Author(s):  
Gilles Pelfrene ◽  
Bruno Cuilier ◽  
Dhaker Ezzeddine ◽  
Alfazazi Dourfaye ◽  
Dimo Dimov ◽  
...  

AbstractDownhole vibration measurements are used real-time and post-run to monitor drilling dynamics. Real-time monitoring tools are applied to facilitate immediate corrective actions but their deployment adds operational constraints and costs. This paper describes a new high-capability vibration recorder embedded in the drill bit as a standard component. The analysis of two case studies in the Middle East shows how memory devices available at a reduced cost and on every run are a valuable option for many appraisal or development wells.Developing a fleet of reliable downhole recording tools typically takes years and involves teams of experts in various fields. The paper describes the strategy followed by a drill bit manufacturer to develop and deploy a compact, high capability and cost-effective vibration recorder to provide continuous readings of accelerations, rotation speed (RPM) and temperature at 100Hz and over 250 hours. Sensors and batteries have been packaged to fit into the drill bit shank or elsewhere in the bottom hole assembly (BHA). The recording starts automatically and thus removes the need for onsite personnel. The paper also presents proprietary data analytics software used to retrieve, process and synchronize the recorded data with other available data (mud logs, Measurement/Logging While Drilling logs) and to present critical drilling events.In the first application, the 8 ½-in. bit drilled a 20,000 ft horizontal drain. More than 250 hr of data were recorded showing intense levels of stick-slip. During the entire run, the drilling team deployed several strategies to mitigate stick-slip, including the use of two surface-based stick-slip mitigation systems. The analysis shows that these systems are sometimes unsuccessful in mitigating stick-slip and are difficult to calibrate. It is demonstrated how the vibration recorder may contribute to fine tuning these mitigation efforts through optimization of their settings. In the second application, the vibration recorder was mounted on a 12 1/4-in. bit used to drill 5,000 ft through cement and formation. The analysis shows the motor was subjected to erratic RPM cycles, leading to frequent stalls and acceleration peaks during the run. It is shown how motor performance then decreased consistently during the last hundreds of feet of the section and how this affected rate of penetration (ROP).Deployment of a vibration recorder over the entire drill bit manufacturer's fleet allows continuous monitoring of critical drilling issues and malfunctions related to a variety of drilling equipment that enables the operator to improve drilling performance. The bit-sensor package makes high frequency data systematically available at a reduced cost for every drilling application.


2016 ◽  
Vol 14 (3) ◽  
pp. 507-525 ◽  
Author(s):  
Ronald I. Powell ◽  
Alex G. Copping

Purpose This research was founded on the premise that more can be done to help improve safety in the global construction industry. Worker fatigue-impairment may be an underlying cause or major contributor to accidents. Fatigue-impairment is believed to be pervasive in construction, and research has shown it can be as concerning as alcohol-impairment. When fatigue-impairment is acknowledged as existing, there is poor understanding of its severity or how it contributes to performance and accidents. The purpose of this research was to attempt to measure fatigue-impairment in real time. Design/methodology/approach This research expanded on actual measurements of fatigue-related impairment from workers on a large construction project displaying significant fatigue-related impairment. The research identified and tested possible techniques for real-time measurement solutions to assist with this safety-related issue. 100 participants had their sleep/wake cycles monitored for a month with an actigraph to derive their on-going mental effectiveness levels by the minute. The same participants took cognitive tests over the month to compare mental performance results to the modelled mental effectiveness levels. Findings Performance results from cognitive tests were compared with modelled mental effectiveness from actigraph-monitored sleep of 100 participants for a month each and showed significant correlation for all cognitive tests used. Practical implications This research showed that real-time surrogate measurements for fatigue-impairment in the workplace exist to assist organizations manage an important workplace hazard. Originality/value Derived from operational settings, this research developed predictive models based on simple, quick and inexpensive cognitive tests as screening techniques for workplace impairment and confirmed the need for and found a solution for fatigue monitoring in the workplace.


2019 ◽  
Vol 20 (2) ◽  
pp. 71-75
Author(s):  
Majid M. Majeed ◽  
Ayad A. Alhaleem

The objective of drilling parameters optimization in Majnoon oilfield is to arrive for a methodology that considers the past drilling data for five directional wells at 35 degree of inclination as a baseline for new wells to be drilled. Also, to predicts drilling performance by selecting the applied drilling parameters generated the highest rate of penetration (ROP) at each section. The focal point of the optimization process is to reduce drilling time and associated cost per each well. The results of this study show that the maximum ROP could not be achieved without sufficient flow rate to cool and clean the bit in clay intervals (36" and 24") hole sections. Although the influence of combination of Weight on Bit (WOB), Round per minute (RPM), and hydraulic horsepower on the bit in (16", 12 1/4" and 8 1/2") hole sections is a key to reduce drilling time, therefore, the drilling parameters produced the fastest ROP per each section was considered as optimum parameters likely to apply for the future wells.


Author(s):  
Josep Maria Margarit-Taule ◽  
Pablo Gimenez-Gomez ◽  
Roger Escude-Pujol ◽  
Manuel Gutierrez-Capitan ◽  
Cecilia Jimenez-Jorquera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document