Formation Characterization and Production Forecast of Tight Sandstone Formations in Daqing Oilfield Through Digital Rock Technology

2021 ◽  
Author(s):  
Danhua Leslie Zhang ◽  
Xiaodong Shi ◽  
Chunyan Qi ◽  
Jianfei Zhan ◽  
Xue Han ◽  
...  

Abstract With the decline of conventional resources, the tight oil reserves in the Daqing oilfield are becoming increasingly important, but measuring relative permeability and determining production forecasts through laboratory core flow tests for tight formations are both difficult and time consuming. Results of laboratory testing are questionable due to the very small pore volume and low permeability of the reservoir rock, and there are challenges in controlling critical parameters during the special core analysis (SCAL) tests. In this paper, the protocol and workflow of a digital rock study for tight sandstones of the Daqing oilfield are discussed. The workflow includes 1) using a combination of various imaging methods to build rock models that are representative of reservoir rocks, 2) constructing digital fluid models of reservoir fluids and injectants, 3) applying laboratory measured wettability index data to define rock-fluid interaction in digital rock models, 4) performing pore-scale modelling to accelerate reservoir characterization and reduce the uncertainty, and 5) performing digital enhanced oil recovery (EOR) tests to analyze potential benefits of different scenarios. The target formations are tight (0.01 to 5 md range) sandstones that have a combination of large grain sizes juxtaposed against small pore openings which makes it challenging to select an appropriate set of imaging tools. To overcome the wide range of pore and grain scales, the imaging tools selected for the study included high resolution microCT imaging on core plugs and mini-plugs sampled from original plugs, overview scanning electron microscopy (SEM) imaging, mineralogical mapping, and high-resolution SEM imaging on the mini-plugs. High resolution digital rock models were constructed and subsequently upscaled to the plug level to differentiate bedding and other features could be differentiated. Permeability and porosity of digital rock models were benchmarked against laboratory measurements to confirm representativeness. The laboratory measured Amott-Harvey wettability index of restored core plugs was honored and applied to the digital rock models. Digital fluid models were built using the fluid PVT data. A Direct HydroDynamic (DHD) pore-scale flow simulator based on density functional hydrodynamics was used to model multiphase flow in the digital experiments. Capillary pressure, water-oil, surfactant solution-oil, and CO2-oil relative permeability were computed, as well as primary depletion followed with three-cycle CO2 huff-n-puff, and primary depletion followed with three-cycle surfactant solution huff-n-puff processes. Recovery factors were obtained for each method and resulting values were compared to establish most effective field development scenarios. The workflow developed in this paper provides fast and reliable means of obtaining critical data for field development design. Capillary pressure and relative permeability data obtained through digital experiments provide key input parameters for reservoir simulation; production scenario forecasts help evaluate various EOR methods. Digital simulations allow the different scenarios to be run on identical rock samples numerous times, which is not possible in the laboratory.

2020 ◽  
Vol 146 ◽  
pp. 01002
Author(s):  
Thomas Ramstad ◽  
Anders Kristoffersen ◽  
Einar Ebeltoft

Relative permeability and capillary pressure are key properties within special core analysis and provide crucial information for full field simulation models. These properties are traditionally obtained by multi-phase flow experiments, however pore scale modelling has during the last decade shown to add significant information as well as being less time-consuming to obtain. Pore scale modelling has been performed by using the lattice-Boltzmann method directly on the digital rock models obtained by high resolution micro-CT images on end-trims available when plugs are prepared for traditional SCAL-experiments. These digital rock models map the pore-structure and are used for direct simulations of two-phase flow to relative permeability curves. Various types of wettability conditions are introduced by a wettability map that opens for local variations of wettability on the pore space at the pore level. Focus have been to distribute realistic wettabilities representative for the Norwegian Continental Shelf which is experiencing weakly-wetting conditions and no strong preference neither to water nor oil. Spanning a realistic wettability-map and enabling flow in three directions, a large amount of relative permeability curves is obtained. The resulting relative permeabilities hence estimate the uncertainty of the obtained flow properties on a spatial but specific pore structure with varying, but realistic wettabilities. The obtained relative permeability curves are compared with results obtained by traditional SCAL-analysis on similar core material from the Norwegian Continental Shelf. The results are also compared with the SCAL-model provided for full field simulations for the same field. The results from the pore scale simulations are within the uncertainty span of the SCAL models, mimic the traditional SCAL-experiments and shows that pore scale modelling can provide a time- and cost-effective tool to provide SCAL-models with uncertainties.


2018 ◽  
Vol 54 (9) ◽  
pp. 7046-7060 ◽  
Author(s):  
Qingyang Lin ◽  
Branko Bijeljic ◽  
Ronny Pini ◽  
Martin J. Blunt ◽  
Samuel Krevor

Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 727-739 ◽  
Author(s):  
Aaron Peche ◽  
Matthias Halisch ◽  
Alexandru Bogdan Tatomir ◽  
Martin Sauter

Abstract. In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluid–fluid interfacial area on highly complex micro-computed tomography (μ-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (pc), wetting phase saturation (Sw) and interfacial area (awn). The basis of this approach is high-resolution μ-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navier–Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluid–fluid interface. In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric μ-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex μ-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution. Finally, the model can be applied to a complex μ-CT-based model domain and the pc–Sw–awn relationship can be computed.


2016 ◽  
Author(s):  
Aaron Peche ◽  
Matthias Halisch ◽  
Alexandru Bogdan Tatomir

Abstract. In this case study, we present the implementation of a FEM-based numerical pore-scale model that enables to track and quantify the propagating fluid-fluid interfacial area on highly complex μ-CT obtained geometries. Special focus is drawn to the reservoir specific capillary pressure (pc)- wetting phase saturation (Sw)- interfacial area (awn)- relationship. The basis of this approach are high resolution μ-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated two-phase flow model is based on the Navier-Stokes equations, including the surface tension force in order to consider capillary effects for the computation of flow and the phase field method for the emulation of a sharp fluid-fluid interface. In combination with specialized software packages, a complex high resolution modeling domain could be obtained. A numerical workflow based on REV-scale pore size distributions is introduced. This workflow aims at the successive modification of model and model setup for simulating such a type of two-phase problem on asymmetric μ-CT-based model domains. The geometrical complexity is gradually increased starting from idealized pore geometries until complex μ-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore size distribution. Finally, the model could be applied on a complex μ-CT-based model domain and the pc-Sw-awn relationship could be computed.


Sign in / Sign up

Export Citation Format

Share Document