Experimental Investigation of Two-Phase Flow Properties of Heterogeneous Rocks for Advanced Formation Evaluation

2021 ◽  
Author(s):  
Pierre Aérens ◽  
Carlos Hassan Torres-Verdin ◽  
D. Nicolas Espinoza

Abstract An uncommon facet of Formation Evaluation is the assessment of flow-related in situ properties of rocks. Most of the models used to describe two-phase flow properties of porous rocks assume homogeneous and/or isotropic media, which is hardly the case with actual reservoir rocks, regardless of scale; carbonates and grain-laminated sandstones are but two common examples of this situation. The degree of spatial complexity of rocks and its effect on the mobility of hydrocarbons are of paramount importance for the description of multiphase fluid flow in most contemporary reservoirs. There is thus a need for experimental and numerical methods that integrate all salient details about fluid-fluid and rock-fluid interactions. Such hybrid, laboratory-simulation projects are necessary to develop realistic models of fractional flow, i.e., saturation-dependent capillary pressure and relative permeability. We document a new high-resolution visualization technique that provides experimental insight to quantify fluid saturation patterns in heterogeneous rocks and allows for the evaluation of effective two-phase flow properties. The experimental apparatus consists of an X-ray microfocus scanner and an automated syringe pump. Rather than using traditional cylindrical cores, thin rectangular rock samples are examined, their thickness being one order of magnitude smaller than the remaining two dimensions. During the experiment, the core is scanned quasi-continuously while the fluids are being injected, allowing for time-lapse visualization of the flood front. Numerical simulations are then conducted to match the experimental data and quantify effective saturation-dependent relative permeability and capillary pressure. Experimental results indicate that flow patterns and in situ saturations are highly dependent on the nature of the heterogeneity and bedding-plane orientation during both imbibition and drainage cycles. In homogeneous rocks, fluid displacement is piston-like, as predicted by the Buckley-Leverett theory of fractional flow. Assessment of capillary pressure and relative permeability is performed by examining the time-lapse water saturation profiles. In spatially complex rocks, high-resolution time-lapse images reveal preferential flow paths along high permeability sections and a lowered sweep efficiency. Our experimental procedure emphasizes that capillary pressure and transmissibility differences play an important role in fluid-saturation distribution and sweep efficiency at late times. The method is fast and reliable to assess mixing laws for fluid-transport properties of rocks in spatially complex formations.


2017 ◽  
Vol 34 (2) ◽  
pp. 323
Author(s):  
Robert Czarnota ◽  
Damian Janiga ◽  
Jerzy Stopa ◽  
Paweł Wojnarowski


2014 ◽  
Vol 758 ◽  
pp. 522-552 ◽  
Author(s):  
Luis Cueto-Felgueroso ◽  
Ruben Juanes

AbstractWe propose a continuum model of two-phase flow in a Hele-Shaw cell. The model describes the multiphase three-dimensional flow in the cell gap using gap-averaged quantities such as fluid saturation and Darcy flux. Viscous and capillary coupling between the fluids in the gap leads to a nonlinear fractional flow function. Capillarity and wetting phenomena are modelled within a phase-field framework, designing a heuristic free energy functional that induces phase segregation at equilibrium. We test the model through the simulation of bubbles and viscously unstable displacements (viscous fingering). We analyse the model’s rich behaviour as a function of capillary number, viscosity contrast and cell geometry. Including the effect of wetting films on the two-phase flow dynamics opens the door to exploring, with a simple two-dimensional model, the impact of wetting and flow rate on the performance of microfluidic devices and geological flows through fractures.



2021 ◽  
Author(s):  
Tomos Phillips ◽  
Jeroen Van Stappen ◽  
Tom Bultreys ◽  
Stefanie Van Offenwert ◽  
Arjen Mascini ◽  
...  

<p>Fractures can provide principal fluid flow pathways in the Earth’s crust, making them a critical feature influencing subsurface geoenergy applications, such as the storage of anthropogenic waste, emissions or energy. In such scenarios, fluid-conductive fault and fracture networks are synonymous with two-phase flow, due to the injection of an additional fluid (e.g. CO<sub>2</sub>) into an already saturated (e.g. brine) system. Predicting and modelling the resulting (partly-)immiscible fluid-fluid interactions, and the nature of fluid flow, on the field-scale, requires an understanding of the constitutive relationships (e.g. relative permeability and capillary pressure) governing fluid flow on the single-fracture scale. In addition to capillary and viscous forces, fracture relative permeability is influenced by aperture heterogeneity, arising from surface roughness. The degree to which surface roughness controls relative permeability behaviour in fractures remains unclear. As all fractures display roughness to various degrees, furthering our understanding of two-phase flow in fractures benefits from a systematic investigation into the impact of roughness on flow properties. To this end, we performed co-injection experiments on two 3D-printed (polymeric resin) fractures with different controlled and quantified surface roughness distributions (Joint Roughness Coefficients of 5 & 7). Brine and decane were simultaneously injected at a series of incrementally decreasing brine fractional flow rates (1, 0.75, 0.5, 0.25, and 0), at low total volumetric flow rates (0.015 mL/min). Steady-state fluid occupancy patterns, preferential flow pathways and overall fluid saturations in each fracture were imaged and compared using an environmental laboratory-based μ-CT scanner with a 5.8 μm voxel size (EMCT; Ghent University Centre for X-ray Computed Tomography). Experimental results highlight the importance of roughness on the relative permeability behaviour of fractures, which is, for example, a principal control on leakage rates from geological stores.</p>



SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 917-927 ◽  
Author(s):  
Thomas Ramstad ◽  
Pål-Eric Øren ◽  
Stig Bakke

Summary We present results from simulations of two-phase flow directly on digitized rock-microstructure images of porous media using a lattice Boltzmann (LB) method. The implemented method is performed on a D3Q19 lattice with fluid/fluid and fluid/solid interaction rules to handle interfacial tension and wetting properties. We demonstrate that the model accurately reproduces capillary and wetting effects in pores with a noncircular shape. The model is applied to study viscous coupling effects for two-phase concurrent annular flow in circular tubes. Simulated relative permeabilities for this case agree with analytical predictions and show that the nonwetting-phase relative permeability might greatly exceed unity when the wetting phase is less viscous than the nonwetting phase. Two-phase LB simulations are performed on microstructure images derived from X-ray microtomography and process-based reconstructions of Bentheimer sandstone. By imposing a flow regulator to control the capillary number of the flow, the LB model can closely mimic typical experimental setups, such as centrifuge capillary pressure and unsteady- and steady-state relative permeability measurements. Computed drainage capillary pressure curves are found to be in excellent agreement with experimental data. Simulated steady-state relative permeabilities at typical capillary numbers in the vicinity of 10−5 are in fair agreement with measured data. The simulations accurately reproduce the wetting-phase relative permeability but tend to underpredict the nonwetting-phase relative permeability at high wetting-phase saturations. We explain this by pointing to percolation threshold effects of the samples. For higher capillary numbers, we correctly observe increased relative permeability for the nonwetting phase caused by mobilization and flow of trapped fluid. It is concluded that the LB model is a powerful and promising tool for deriving physically meaningful constitutive relations directly from rock-microstructure images.





Author(s):  
Jennifer Niessner ◽  
S. Majid Hassanizadeh ◽  
Dustin Crandall

We present a new numerical model for macro-scale two-phase flow in porous media which is based on a physically consistent theory of multi-phase flow. The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid–fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study.



Sign in / Sign up

Export Citation Format

Share Document