scholarly journals Development of Deep Transformer-Based Models for Long-Term Prediction of Transient Production of Oil Wells

2021 ◽  
Author(s):  
Ildar Radikovich Abdrakhmanov ◽  
Evgenii Alekseevich Kanin ◽  
Sergei Andreevich Boronin ◽  
Evgeny Vladimirovich Burnaev ◽  
Andrei Aleksandrovich Osiptsov

Abstract We propose a novel approach to data-driven modeling of a transient production of oil wells. We apply the transformer-based neural networks trained on the multivariate time series composed of various parameters of oil wells measured during their exploitation. By tuning the machine learning models for a single well (ignoring the effect of neighboring wells) on the open-source field datasets, we demonstrate that transformer outperforms recurrent neural networks with LSTM/GRU cells in the forecasting of the bottomhole pressure dynamics. We apply the transfer learning procedure to the transformer-based surrogate model, which includes the initial training on the dataset from a certain well and additional tuning of the model's weights on the dataset from a target well. Transfer learning approach helps to improve the prediction capability of the model. Next, we generalize the single-well model based on the transformer architecture for multiple wells to simulate complex transient oilfield-level patterns. In other words, we create the global model which deals with the dataset, comprised of the production history from multiple wells, and allows for capturing the well interference resulting in more accurate prediction of the bottomhole pressure or flow rate evolutions for each well under consideration. The developed instruments for a single-well and oilfield-scale modelling can be used to optimize the production process by selecting the operating regime and submersible equipment to increase the hydrocarbon recovery. In addition, the models can be helpful to perform well-testing avoiding costly shut-in operations.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1344
Author(s):  
Arjun Magotra ◽  
Juntae Kim

The plastic modifications in synaptic connectivity is primarily from changes triggered by neuromodulated dopamine signals. These activities are controlled by neuromodulation, which is itself under the control of the brain. The subjective brain’s self-modifying abilities play an essential role in learning and adaptation. The artificial neural networks with neuromodulated plasticity are used to implement transfer learning in the image classification domain. In particular, this has application in image detection, image segmentation, and transfer of learning parameters with significant results. This paper proposes a novel approach to enhance transfer learning accuracy in a heterogeneous source and target, using the neuromodulation of the Hebbian learning principle, called NDHTL (Neuromodulated Dopamine Hebbian Transfer Learning). Neuromodulation of plasticity offers a powerful new technique with applications in training neural networks implementing asymmetric backpropagation using Hebbian principles in transfer learning motivated CNNs (Convolutional neural networks). Biologically motivated concomitant learning, where connected brain cells activate positively, enhances the synaptic connection strength between the network neurons. Using the NDHTL algorithm, the percentage of change of the plasticity between the neurons of the CNN layer is directly managed by the dopamine signal’s value. The discriminative nature of transfer learning fits well with the technique. The learned model’s connection weights must adapt to unseen target datasets with the least cost and effort in transfer learning. Using distinctive learning principles such as dopamine Hebbian learning in transfer learning for asymmetric gradient weights update is a novel approach. The paper emphasizes the NDHTL algorithmic technique as synaptic plasticity controlled by dopamine signals in transfer learning to classify images using source-target datasets. The standard transfer learning using gradient backpropagation is a symmetric framework. Experimental results using CIFAR-10 and CIFAR-100 datasets show that the proposed NDHTL algorithm can enhance transfer learning efficiency compared to existing methods.


Author(s):  
Narendhar Gugulothu ◽  
Vishnu TV ◽  
Pankaj Malhotra ◽  
Lovekesh Vig ◽  
Puneet Agarwal ◽  
...  

We consider the problem of estimating the remaining useful life (RUL) of a system or a machine from sensor data. Many approaches for RUL estimation based on sensor data make assumptions about how machines degrade. Additionally, sensor data from machines is noisy and often suffers from missing values in many practical settings. We propose Embed-RUL: a novel approach for RUL estimation from sensor data that does not rely on any degradation-trend assumptions, is robust to noise, and handles missing values. Embed-RUL utilizes a sequence-to-sequence model based on Recurrent Neural Networks (RNNs) to generate embeddings for multivariate time series subsequences. The embeddings for normal and degraded machines tend to be different, and are therefore found to be useful for RUL estimation. We show that the embeddings capture the overall pattern in the time series while filtering out the noise, so that the embeddings of two machines with similar operational behavior are close to each other, even when their sensor readings have significant and varying levels of noise content. We perform experiments on publicly available turbofan engine dataset and a proprietary real-world dataset, and demonstrate that Embed-RUL outperforms the previously reported state-of-the-art (Malhotra, TV, et al., 2016) on several metrics.


2017 ◽  
Vol 6 (4) ◽  
pp. 15
Author(s):  
JANARDHAN CHIDADALA ◽  
RAMANAIAH K.V. ◽  
BABULU K ◽  
◽  
◽  
...  

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Gustaf Halvardsson ◽  
Johanna Peterson ◽  
César Soto-Valero ◽  
Benoit Baudry

AbstractThe automatic interpretation of sign languages is a challenging task, as it requires the usage of high-level vision and high-level motion processing systems for providing accurate image perception. In this paper, we use Convolutional Neural Networks (CNNs) and transfer learning to make computers able to interpret signs of the Swedish Sign Language (SSL) hand alphabet. Our model consists of the implementation of a pre-trained InceptionV3 network, and the usage of the mini-batch gradient descent optimization algorithm. We rely on transfer learning during the pre-training of the model and its data. The final accuracy of the model, based on 8 study subjects and 9400 images, is 85%. Our results indicate that the usage of CNNs is a promising approach to interpret sign languages, and transfer learning can be used to achieve high testing accuracy despite using a small training dataset. Furthermore, we describe the implementation details of our model to interpret signs as a user-friendly web application.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1807
Author(s):  
Sascha Grollmisch ◽  
Estefanía Cano

Including unlabeled data in the training process of neural networks using Semi-Supervised Learning (SSL) has shown impressive results in the image domain, where state-of-the-art results were obtained with only a fraction of the labeled data. The commonality between recent SSL methods is that they strongly rely on the augmentation of unannotated data. This is vastly unexplored for audio data. In this work, SSL using the state-of-the-art FixMatch approach is evaluated on three audio classification tasks, including music, industrial sounds, and acoustic scenes. The performance of FixMatch is compared to Convolutional Neural Networks (CNN) trained from scratch, Transfer Learning, and SSL using the Mean Teacher approach. Additionally, a simple yet effective approach for selecting suitable augmentation methods for FixMatch is introduced. FixMatch with the proposed modifications always outperformed Mean Teacher and the CNNs trained from scratch. For the industrial sounds and music datasets, the CNN baseline performance using the full dataset was reached with less than 5% of the initial training data, demonstrating the potential of recent SSL methods for audio data. Transfer Learning outperformed FixMatch only for the most challenging dataset from acoustic scene classification, showing that there is still room for improvement.


Sign in / Sign up

Export Citation Format

Share Document