Thermal EOR Conformance – A New Frontier for Asset Optimization: Steam Shutoff Pilot in Oman

2021 ◽  
Author(s):  
Talal Al-Aulaqi ◽  
Hussain Al Bulushi ◽  
Hashim Al Hashmi ◽  
Sultan Al Amri ◽  
Ali Al Habsi ◽  
...  

Abstract Over the last 50 years, thermal EOR has been an effective method for reducing the viscosity of and recovering heavy oil from deep reservoirs. In mature thermal EOR projects, conformance is one of the main challenges for maximizing reserves and meeting long-term production expectations. In this paper, Occidental presents a novel pilot to address thermal conformance in the Mukhaizna field in Oman. This is a thermal EOR operation in deep reservoirs (> 2,000 ft) with extremely high viscosity (>10,000 cp) in harsh desert conditions with temperatures exceeding 500°F. The pilot area is a mature thermal area with 15 years of continuous steamflood operations. The novel conformance technique, based on a combination of chemical and zonal mechanical isolation systems, was developed in-house in a low oil price environment. The pilot area consists of multiple reservoir zones that have undergone vertical steam injection since 2005. Thermal conformance has emerged as a challenge because more than 60% of the injected steam has been preferentially entering the high-permeability zones, with only 40% of the steam entering the other zones, which hold a larger amount the remaining oil. The subsurface and well engineering teams collaborated to design a rigless operation using dual coiled tubing units, one for cooling water and one pumping a chemical gelation recipe that gels at a certain trigger gelation temperature at the target zone. Zonal isolation of the reservoir is achieved using a novel inflatable packer triggered mechanically by ball gravitation through coiled tubing at 500°F and retrieved after the temporary zonal isolation. The well and reservoir surveillance included gathering data for injectivity assessment, vertical injection logging, temperature profiles, tracer tests in offset producers, and well testing for determining water cut. The pilot improved vertical conformance, as injection logging showed 40% steam reduction was achieved in the target zone, and more steam was re-allocated to the shallow zones. In addition, there was a water cut reduction of more than 20% in offset producers, and oil production tripled over a period of 3 months, which paid back the cost of the pilot and generated positive cash flow. To our knowledge, based on an SPE literature search, this is the first successful thermal conformance operation conducted with the following combination of technologies: 1) Placing a novel chemical recipe through temporary zonal isolation with an inflatable packer, and 2) Using rigless operation of coiled tubing units at harsh conditions of >500°F and high pressure >1000 psi. The outcomes open a new frontier for thermal EOR development in multi-stack reservoirs, offering better utilization of steam injection and improving mobility control over the field life cycle. The cost of the pilot project was paid off in the first 6 weeks, and all chemicals used were developed in an eco-friendly system.

2021 ◽  
Author(s):  
Anatoliy Andreevich Isaev ◽  
Rustem Shafagatovich Takhautdinov ◽  
Vladimir Ivanovich Malykhin ◽  
Almaz Amirzyanovich Sharifullin

Abstract This paper presents a set of activities to reduce water cut and develop a technical solution to measure water cut: measurement of watercut, flow rates and gas-oil ratio of a well output using a mobile unit. tracer tests and conformance control operations - watercut of reacting wells within Bashkirian stage decreased by 16,6% after those operations were performed. water flow control, flow deviation and remedying production casing damages made it possible to reduce extraction of produced water and, accordingly, the cost of oil production. development of Liquid Phase Separation Device enabled alternate delivery of oil and water to the intake of downhole pump.


2004 ◽  
Author(s):  
Yoliandri Susilo ◽  
_ Hendarwin ◽  
Wahju Wibowo ◽  
Budhira L. Tobing ◽  
Arbai Imam ◽  
...  

2011 ◽  
Author(s):  
Victor Gerardo Vallejo ◽  
Aciel Olivares ◽  
Pablo Crespo Hdez ◽  
Eduardo R. Roman ◽  
Claudio Rogerio Tigre Maia ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Ashutosh Dikshit ◽  
Amrendra Kumar ◽  
Glenn Woiceshyn

Summary Interest is high in a method to reliably run single-trip completions without involving complex/expensive technologies (Robertson et al. 2019). The reward for such a design would be reduced rig time, safety risks, and completion costs. As described herein, a unique pressure-activated sliding side door (PSSD) valve was developed and field tested to open without intervention after completion is circulated to total depth (TD) and a liner hanger and openhole isolation packers are set. A field-provensliding-sleeve door (SSD) valve that required shifting via a shifting tool run on coiled tubing, slickline (SL), or wireline was upgraded to open automatically after relieving tubing pressure once packers (and/or a liner hanger) are set. This PSSD technology, which is integrable to almost any type of sand control screen, is equipped with a backup contingency should the primary mechanism fail to open. Once opened, the installed PSSDs can be shifted mechanically with unlimited frequency. The two- or three-position valve can be integrated with inflow control devices (ICDs) (includes autonomous ICDs/autonomous inflow control valves) and allows mechanical shifting at any time after installation to close, stimulate or adjust ICD settings. After a computer-aided design stage to achieve all the operational/mechanical requirements, prototypes were built and tested, followed by field installations. The design stage provided some challenges even though the pressure-activation feature was being added to a mature/proven SSD technology. Prototype testing in a full-scale vertical test well proved valuable because it revealed failure modes that could not have appeared in the smaller-scale laboratory test facilities. Lessons learned from the first field trial helped improve onsite handling procedures. The production logging tool run on first installation confirmed the PSSDs with ICDs opened as designed. The second field installation involved a different size and configuration, in which PSSDs with ICDs performed as designed. The unique two- or three-position PSSD accommodates any type of sand control or debris screen and any type of ICD for production/injection. The PSSD allows the flexibility to change ICD size easily at the wellsite. Therefore, this technology can be used in carbonate as well as sandstone wells. Wells that normally could not justify the expense of existing single-trip completion technologies can now benefit from the cost savings of single-trip completions, including ones that require ICD and stimulation options.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2282-2285
Author(s):  
Xiao Hua Wang

Well testing engineering design must be completed according to the geological and engineering tasks and the actual condition of the well before logging, and then the test preparation completes according to the design. The whole construction process is carried out in accordance with the engineering design, For the complex test cases, it is need to adjust the testing process according to the basis data of engineering design and actual situation, engineering design is very important for the construction of production profile testing of horizontal wells. Engineering design can improve the test efficiency, ensure the accuracy of test data and test safety, reduce the cost of testing. This paper analyzed the role of engineering design in the testing construction and expounds the influence of engineering design for test construction by way of example.


2013 ◽  
Author(s):  
Chris Stolte ◽  
Chris Wu ◽  
Darryrl Carroll ◽  
Wang Shiqian

2006 ◽  
Author(s):  
Muhammad Ishamuddin Omar ◽  
Azhar Md Ali ◽  
Zulkifli Ali ◽  
Arthur Pinio Parapat ◽  
William Speck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document