Successful Zonal Isolation in Complex Fractured Carbonate Scenario Using Thixotropic Gel and Hybrid Electric-Fiber Cable Coiled Tubing Technology

2021 ◽  
Author(s):  
Pasquale Pollio ◽  
Gianluca Fortunato ◽  
Salvatore Spagnolo ◽  
Gianni Baldassarri ◽  
Pasquale Cappuccio ◽  
...  

Abstract Water production has always afflicted mature fields due to the uneconomical nature of high water cut (WC) wells and the high cost of water management. Rigless coiled tubing (CT) interventions with increasingly articulated operating procedures are the key to a successful water reduction. In the scenario presented in this paper, high technological through tubing water shut off (WSO) for a long horizontal open hole (OH) well in a naturally fractured carbonate reservoir leads the way to new opportunities of production optimization. Engineering phase included sealant fluid re-design: the peculiar well architecture and fracture systems led to the customization of a sealant gel by modifying its rheological properties through laboratory tests, to improve effectiveness of worksite operations. A new ad-hoc procedure was defined, with a new selective pumping and testing technique tailored to each drain fracture. The use of Real-Time Hybrid Coiled Tubing Services (CT with fiber optic system coupled with real time capabilities of an electric cable) made it possible to optimize intervention reliability. Details of the operating procedure are given, with the aim of ensuring a successful outcome of the overall treatment Sealing gels are effective in plugging the formation, but in fractured environments the risk of losing the product before it starts to build viscosity is high. The success of the water shut off job has been obtained by using specific gel with thixotropic properties for an effective placement. In addition, the pumping has been performed in steps, each followed by a pressure test to assess the effectiveness of the plugging. Results are compared to two past interventions with equal scope in the same well: a first one with high volume of gel and an unoptimized pumping technique through CT and a second where a water reactive product was pumped by bullheading. The selective and repetitive approach pumping multiple batches of sealant system with CT stationary in front of a single fracture provided the best results from all three techniques. The real-time bottom hole data reading capability provided by hybrid CT allowed the placement of thru tubing bridge plugs (BP) with high accuracy and confidence with the ability to set electrically, therefore reducing risks related to hydraulic setting tools (i.e. premature setting). This also allows continual pumping during the run in hole (RIH) to clean up the zone prior to setting the BP. The combination of this innovative pumping technique and customization of the sealant fluid made it possible to achieve unprecedented water reduction in the field. The high technology CT supported the operation by providing continuous power and telemetry to the bottom hole assembly (BHA) for real time (RT) downhole diagnostics. Moreover, the operating procedures offer basic guidelines to successfully perform water shut off jobs in any other reservoir independent of its geological nature and structure.

2011 ◽  
Author(s):  
Rodrigo Aviles ◽  
Jose G. Flores ◽  
Frederic Martin ◽  
Alan Diaz ◽  
Luis Eugenio Davila De Garate ◽  
...  

2021 ◽  
Author(s):  
Azwan Hadi Keong ◽  
Jesus Campos ◽  
Andrei Casali ◽  
Anders Hansen ◽  
Sindre Vingen ◽  
...  

Abstract On the Norwegian continental shelf (NCS), coiled tubing (CT) cleanout requires small bites and frequent wiper trips to the surface due to potential sand bedding in a large and deviated completion. A real-time CT downhole measurement system is used to optimize the operation, following a dynamic workflow. Conventionally, the system is powered by downhole lithium battery, which limits CT downhole operating time. A continuous surface-powered system was needed to promote further optimization for such operation. A new hybrid electro-optical cable was introduced to enable continuous power supply from surface to the real-time downhole tool sensors. The system consists of a surface power module that sends power through a layer of low-DC-resistance conductors and optical fibers that enable data telemetry. Conventionally, only three to four trips can be completed before replacement of the downhole battery is required. Battery replacement can take up to 8 hours due to the complexity of that offshore environment. With the continuous power supply, the CT cleanout operation can continue for days without interruption of data from the downhole tool sensors. A three-well CT cleanout campaign in the NCS demonstrated the benefits of this new real-time downhole measurement system by using accurate downhole weight and torque readings to control the penetration through scale and avoid motor stalls. Sections of scale bridges were identified during the cleanout by monitoring fluctuations of downhole torque of the mill. The monitoring allows CT operators to control penetration rate and bite length during the cleanout. When the milled debris are swept, downhole weight is used to detect early signs of solids plugging around the mill. Downhole pressures complement surveillance of the sweeping of solids to the surface by giving a qualitative measurement of solids loading through conversion of the real-time bottomhole pressure reading into equivalent circulating density with changing CT depth. The process of optimizing bite length and sweeping speed is repeated without interruption thanks to continuous power supply from the surface, eventually leading to time reduction. In one of the wells, downhole tools uninterruptedly acquired data for 10 days straight. The CT managed to clean out a total of 40 908 kg of a mixture of scale and sand, with an estimated average time reduction of 25% when compared to CT cleanout without real-time downhole data. Delivery of continuous high-voltage power to downhole tools not only enables reduction in operating time, it also paves the way for extending the capabilities of CT interventions by enabling the operation of more electrically activated application tools. It allows combining multiple work scopes in a single CT run, which reduces operating cost and provides greater operational flexibility. Finally, eliminating the dependency on lithium batteries reduces the carbon footprint for a more sustainable operation.


2021 ◽  
Author(s):  
Yanhui Zhang ◽  
Ibrahim Hoteit ◽  
Klemens Katterbauer ◽  
Alberto Marsala

Abstract Saturation mapping in fractured carbonate reservoirs is a major challenge for oil and gas companies. The fracture channels within the reservoir are the primary water conductors that shape water front patterns and cause uneven sweep efficiency. Flow simulation for fractured reservoirs is typically time-consuming due to the inherent high nonlinearity. A data-driven approach to capture the main flow patterns is quintessential for efficient optimization of reservoir performance and uncertainty quantification. We employ an artificial intelligence (AI) aided proxy modeling framework for waterfront tracking in complex fractured carbonate reservoirs. The framework utilizes deep neural networks and reduced-order modeling to achieve an efficient representation of the reservoir dynamics to track and determine the fluid flow patterns within the fracture network. The AI-proxy model is examined on a synthetic two-dimensional (2D) fractured carbonate reservoir model. Training dataset including saturation and pressure maps at a series of time steps is generated using a dual-porosity dual-permeability (DPDP) model. Experimental results indicate a robust performance of the AI-aided proxy model, which successfully reproduce the key flow patterns within the reservoir and achieve orders of shorter running time than the full-order reservoir simulation. This suggests the great potential of utilizing the AI-aided proxy model for heavy-simulation-based reservoir applications such as history matching, production optimization, and uncertainty assessment.


2015 ◽  
Author(s):  
Harmohan Gill ◽  
Ronald Morris ◽  
Prasad Karadkar ◽  
Syed Danish ◽  
Angel Arenas ◽  
...  

2016 ◽  
Vol 9 (1) ◽  
pp. 10-20
Author(s):  
Weian Huang ◽  
Zaiming Wang ◽  
Zhengsong Qiu ◽  
Zhongzhi Hu ◽  
Hanyi Zhong ◽  
...  

To meet the requirements of leakage stopping and reservoir protection at the same time in fractured formation, the removable plugging slurries with high temperature tolerance were designed, evaluated and applied in the field successfully. Analysis shows that the fibre materials can deposit onto crack surface, bridge and seal fractures quickly and the selected particles can bridge in throat near wellbore. The comprehensive grading of filling particles was determined from the point of view of gradient filling. The designed plugging slurries KJD155 and KJD200 with higher total dissolution rates sealed 1 mm, 2 mm, 3 mm, and 4 mm crack blocks effectively at room temperature and high temperature (KJD155 at 155 °C; KJD200 at 200 °C) respectively. Their pressure bearing ability of them was up to 5 MPa under bottom hole conditions, which was beneficial to the next operation. Field application of the designed plugging slurries was carried out successfully and showed that they were removable and did smaller damage to reservoir.


Author(s):  
A.V. Matsko ◽  
◽  
V.T. Lukyanov ◽  
V.Yu. Bliznyukov ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document