BENDING OF COILED TUBING AT THE BOTTOM HOLE AND THE WELLHEAD

Author(s):  
A.V. Matsko ◽  
◽  
V.T. Lukyanov ◽  
V.Yu. Bliznyukov ◽  
Keyword(s):  
2014 ◽  
Vol 1065-1069 ◽  
pp. 2049-2052
Author(s):  
Liang Hu ◽  
De Li Gao

Hydraulic orienter has been widely used to alter the drilling direction downhole in coiled tubing drilling. A problem is encountered in construction field. When torque and drag of bottom hole assembly (BHA) are over the maximum output torque of orienter, This caused that it difficult to orient. Therefore, we need to calculate the maximum torque and drag in the process of orientation, it can provide a theoretical basis for designing and selecting the hydraulic orienter. Compared with the conventional force analysis, this paper additionally considered the case of zero weight on bit (WOB), the impact of the mud viscous forces and the relationship between dynamic and static friction, so that we can get more precise result of force analysis.


2021 ◽  
pp. 75-85
Author(s):  
D. S. Leontiev ◽  
I. I. Kleshchenko ◽  
A. D. Shalyapina ◽  
M. M. Mansurova

In the modern practice of gas field operation, there is a problem associated with the inflow of bottom water to the bottom hole of the well. One of the ways to solve this urgent problem is the introduction of water isolation technologies in the development of gas fields and the use of special compositions and technological equipment for pumping liquids into the watered layers of gas wells. The article deals with the application of a set of special technological measures, such as installation of surface equipment for working in a gas well using coiled tubing, descent of a flexible pipe through a column of pump and compressor pipes with a packer, construction of an inflatable packer, as well as the use of a selective water-insulating composition of the well by pumping it through existing perforation channels in the casing string. Liquids based on ethyl silicate create a kind water shut-off screen between the gas- saturated and water-saturated parts of the gas well formation.


2014 ◽  
Vol 6 ◽  
pp. 935159 ◽  
Author(s):  
Feng Guan ◽  
Weiguo Ma ◽  
Yiliu Tu ◽  
Chuanxi Zhou ◽  
Ding Feng ◽  
...  

Coiled tubing drilling has become an important development direction of drilling. The method of combining theoretical calculation with the experimental verification is adopted to analyze the flow of the coiled tubing drilling system. A set of experimental bench is developed, three kinds of curvature ratio of coiled tubing are used, and the frictional pressure losses of coiled tubing and partial pressure drop of each downhole tool are tested. The results of experiments with water agree well with rough pipe calculation model. The pressure losses of coiled tube are obviously larger than that of straight tube, and the value of it is about 11–17%. The larger the curvature ratio is, the more the pressure losses of coiled tubing are. The fluid experiment with the polymer presents obviously the drag reduction effect. Experiment of simulated bottom hole assembly shows that partial pressure drop of bottom hole assembly is large. It has a little effect on the pressure losses of coiled tubing when whole bottom hole assemblies are connected. The research results can be used as the basis for formulating coiled tubing drilling process parameters, which will provide a guide for engineering practice.


2007 ◽  
Author(s):  
Larry G. Stolarczyk ◽  
Gerald L. Stolarczyk ◽  
Larry Icerman ◽  
John Howard ◽  
Hooman Tehrani

2021 ◽  
Author(s):  
Ahmed. N. Alduaij ◽  
Zakareya Al-Bensaad ◽  
Mauricio Espinosa ◽  
Danish Ahmed ◽  
Madhurjya Dehingia

Abstract Successful coiled tubing (CT) descaling interventions require control of several key aspects, including fluid leakoff into the formation, proper surface solids handling, and controlled hydrogen sulfide (H2S) release at the surface. Successful treatment control is achieved by monitoring the surface and downhole parameters. The recently introduced pressure and fluid management system, crosslinked foam-based fluid, and a fluid mixing system for CT descaling treatments pose challenges that require enhancements to these elements for successful treatment. The pressure and fluid management system was enhanced to include a new high-rate mud/gas separator to 1) increase gas/fluid separation capacity and avoid foam flowing to flare, 2) rig up the flare line with inclination to allow all water to be drained and prevent formation gas flowing to flare lines, and 3) increase retention time for better foam breaking and material settling. A liquid flowmeter was also added to improve influx and leakoff control by monitoring the volume of liquid injected and matching the volume of liquid returned on surface in addition to the level gauges on the return tanks of the pressure and fluid management system. The foamed-based fluid breaking system and H2S presence in returns were mitigated by removing crosslinker and introducing an H2S scavenger on returns whereas foam breaking was enhanced by additional breaker injection points on returns. Fluid mixing capabilities were enhanced by the introduction of an on-the-fly continuous mixing system that sped up and simplified the mixing process. The mud/gas separator efficiently separated the gas from liquid, leading the gas to be burnt at flare and the liquid to be processed in the pressure and fluid management system. It further helped in preventing the liquid flowing to flare, which lessened the risk of flare shutdown and H2S ventilation. The on-the-fly continuous mixing system provided a faster and more-efficient mixing process as an alternate to batch mixing. These system-controlled metering, mixing, and monitoring capabilities significantly reduced the crew and equipment footprint, leading to minimizing the health, safety, and environment (HSE) concerns and cost savings. The fluid flowmeter allowed efficient choke and bottom-hole pressure control. Fluid flowmeter readings helped in choke and bottom-hole pressure reading adjustments based on amount of fluids pumped and matching the same amount of fluids returned at the surface. It prevented the fluid leakoff into the formation or influx of gas into the wellbore. Additionally, this new process created better control of downhole differential pressure during the scale cleanup and transportation. This project integrated different technologies and techniques that can be utilized for descaling treatment enhancements. The recent enhancements to the CT descaling operation resulted in greater efficiency, cost savings, reduced formation damage, and safe operations.


2021 ◽  
Author(s):  
Pasquale Pollio ◽  
Gianluca Fortunato ◽  
Salvatore Spagnolo ◽  
Gianni Baldassarri ◽  
Pasquale Cappuccio ◽  
...  

Abstract Water production has always afflicted mature fields due to the uneconomical nature of high water cut (WC) wells and the high cost of water management. Rigless coiled tubing (CT) interventions with increasingly articulated operating procedures are the key to a successful water reduction. In the scenario presented in this paper, high technological through tubing water shut off (WSO) for a long horizontal open hole (OH) well in a naturally fractured carbonate reservoir leads the way to new opportunities of production optimization. Engineering phase included sealant fluid re-design: the peculiar well architecture and fracture systems led to the customization of a sealant gel by modifying its rheological properties through laboratory tests, to improve effectiveness of worksite operations. A new ad-hoc procedure was defined, with a new selective pumping and testing technique tailored to each drain fracture. The use of Real-Time Hybrid Coiled Tubing Services (CT with fiber optic system coupled with real time capabilities of an electric cable) made it possible to optimize intervention reliability. Details of the operating procedure are given, with the aim of ensuring a successful outcome of the overall treatment Sealing gels are effective in plugging the formation, but in fractured environments the risk of losing the product before it starts to build viscosity is high. The success of the water shut off job has been obtained by using specific gel with thixotropic properties for an effective placement. In addition, the pumping has been performed in steps, each followed by a pressure test to assess the effectiveness of the plugging. Results are compared to two past interventions with equal scope in the same well: a first one with high volume of gel and an unoptimized pumping technique through CT and a second where a water reactive product was pumped by bullheading. The selective and repetitive approach pumping multiple batches of sealant system with CT stationary in front of a single fracture provided the best results from all three techniques. The real-time bottom hole data reading capability provided by hybrid CT allowed the placement of thru tubing bridge plugs (BP) with high accuracy and confidence with the ability to set electrically, therefore reducing risks related to hydraulic setting tools (i.e. premature setting). This also allows continual pumping during the run in hole (RIH) to clean up the zone prior to setting the BP. The combination of this innovative pumping technique and customization of the sealant fluid made it possible to achieve unprecedented water reduction in the field. The high technology CT supported the operation by providing continuous power and telemetry to the bottom hole assembly (BHA) for real time (RT) downhole diagnostics. Moreover, the operating procedures offer basic guidelines to successfully perform water shut off jobs in any other reservoir independent of its geological nature and structure.


Sign in / Sign up

Export Citation Format

Share Document