Unlocking Tight Oil: Multistage Horizontal Well Fracturing in Unconventional Reservoir, a Successful UAE Case History

2021 ◽  
Author(s):  
Nabila Lazreq ◽  
Anwar Alam ◽  
Taliwati Ao ◽  
Anil Singh Negi ◽  
W.D. Von Gotten

Abstract Tight Oil Unconventional Reservoirs are challenging when it comes to development and enhancement of production. Transverse Multistage Hydraulic fracturing technique is widely used to maximize production from unconventional reservoirs, however it can be quite challenging when it comes down to execution across longer Tight Oil Horizontal laterals. The paper describes in full the various aspect of technical and operational planning in order to successfully execute highest number of Frac Stages in a well in UAE across a lateral length of 5300 ft This paper will describe an Integrated Field development Study that included building of Geomechanical Model for in-situ stress characterization and rock elastic properties for 3D Hydraulic Fracture Modelling. The fully 3D Hydraulic Fracture model assisted in geometrically spacing, finalizing and optimizing the number of Frac Stages across the horizontal Lateral. In order to optimize the design, specialized cores studies were conducted as part of the process such as Steady State measurements of permeability. In this paper the testing part will be describe in full and how the study was incorporated in the state-of-art Frac Simulator to ensure optimized frac design and realistic deliverable. The paper focusses on the operation planning, execution and efficiency. This includes frac stages execution, pump down plug and perf, number of cluster optimization & cluster spacing, milling, cleanout and flowback. Also in order to quantify the contribution from each stage, tracer services was utilized which will be detailed in the paper. Finally the paper will also cover the Well Testing strategy, which is one of the crucial aspect of the well deliverability. API Lab and Composition Analysis of Oil & Gas Samples were also conducted post fracturing as part of the study. The overall planning and execution of this well will become a guide and will be utilized for future well and frac design, which will be discussed in the paper. This integrated approach will be utilized in planning and designing future wells. The post fracturing data and production data collected from the well will help in further Frac Stage optimization which will lead to overall cost optimization

2021 ◽  
Author(s):  
Abdelghani Gueddoud ◽  
Ahmed Al Hanaee ◽  
Riaz Khan ◽  
Atef Abdelaal ◽  
Redy Kurniawan ◽  
...  

Abstract The Miocene Gachsaran Formation across Onshore Abu Dhabi and Dubai possesses high potential of generating shallow biogenic gas. A dynamic model and field development plan generated based on a detail G&G analysis to understand and evaluate its capability as promising gas resources. Specific approaches and workflow generated for volumetric and dynamic reservoir model capable of defining the most viable development strategy of the field from both an economic and technical standpoint. The proposed workflow adapts also the development plan from single pad-scale to full field development plan. A fine-grid field-scale with more than hundreds of Pads covering the sweet spot area of three thousands of square kilometers including structure, reservoir properties built based on existing vertical wells, newly drilled horizontal wells and seismic interpretation. In this paper, a robust workflow for big and complex unconventional biogenic gas reservoir modeling and simulation technique have been developed with hydraulic fracture and stimulated area created through LGR. Independent workflows generated for the adsorbed gas in place calculation, desorption flow mechanism, and Pads field development plan. An accuracy on in place calculation, desorption flow mechanism and Pseudo steady state flow through direct and indirect total gas concentration measured using (1) Pressurize core and sorption isotherm capacity experiment, (2) Langmuir /BET function and Vmax scaling curves for each grid cells, and (3) Gas concentration versus TOC relationship. Field development plan for unconventional shallow biogenic gas reservoirs is possible only if a communication network created through hydraulic fractures connects a huge reservoir area to the wellbore effectively. A complete workflow presented for modeling and simulation of unconventional reservoirs, which in-corporates the characterization of hydraulic fracture and their interaction with reservoir matrix. Dual porosity model has been constructed with accurate in place calculation through scaling the Langmuir function and calculation Vmax for each grid cell of the full field model, The single Pad design approach in the development plan has exhibited great advantages in terms of improvement in the quality and flexibility of the model, reduction of working time with the same Pad model design which is adapted for the full field development plan. The proposed unconventional modeling and field development plan workflow provides an efficient and useful unconventional dynamic model construction and full field development planning under uncertainty analysis. Minimizing the uncertainty in place calculation and production forecasting for unconventional reservoirs necessitates an accurate direct and indirect data measurement of gas concentration and flow mechanism through the laboratory measurement. Field development plan for unconventional reservoirs is possible only if fracture network can be created through hydraulic fractures that connects a huge reservoir area to the wellbore effectively through pad completion.


2009 ◽  
Author(s):  
Innocent Okoro ◽  
Jennifer Krolow ◽  
Djuro Novakovic ◽  
Adeniyi Aladesulu ◽  
Kendall Reynolds ◽  
...  

2021 ◽  
Vol 61 (1) ◽  
pp. 132
Author(s):  
Leigh Thomas ◽  
Matthew Waugh ◽  
Matthew Thornberry ◽  
Hanming Wang ◽  
Haifeng Wang ◽  
...  

2016 ◽  
Author(s):  
Valeriy Pavlov ◽  
Evgeny Korelskiy ◽  
Kreso Kurt Butula ◽  
Artem Kluybin ◽  
Danil Maximov ◽  
...  

2021 ◽  
Author(s):  
Orient Balbir Samuel ◽  
Ashvin Avalani Chandrakant ◽  
Fairus Azwardy Salleh ◽  
Ahsan Jamil ◽  
Zulkifli Ibrahim ◽  
...  

Abstract Field D is a mature offshore field located in East Malaysia. A geologically complex field having multiple-stacked reservoirs with lateral and vertical faulted compartments & uncertainty in reservoir connectivity posed a great challenge to improve recovery from the field. Severe pressure depletion below bubble point and unconstrained production from gas cap had contributed to premature shut-ins of more than 50% of strings. As of Dec 2019, the field has produced at a RF less than 20%. Initial wells design consisted of conventional dual strings & straddle packers with sliding sleeves (SSD). Field development team was challenged for a revamp on completion design to enhance economic life of the depleting field. In 2015, as part of Phase-1 development campaign, nine wells including four water injectors were completed initiating secondary recovery through water flood. An approach of Smart completion comprising of permanent downhole monitoring system (PDHMS) and hydraulic controlled downhole chokes or commonly known as flow control valve (FCV) was adopted in all the wells in order to optimize recovery from the field and step towards intervention-less solutions. Seeing the benefits of intelligent completion in Phase-1, Phase-2, drilled and completed in 2019 – 2020 has been equipped with new technology "All-electric Intelligent Completion System" in 4 out of 8 oil producers. The new design addresses the reservoir complexity, formation pressure and production challenges and substantial cost optimization, phasing out the load of high OPEX to CAPEX. Installation of "All-electric Intelligent Completion System" has proven to be an efficient system compared to hydraulic smart completions system. It requires 50% to 75% less installation time per zone and downhole FCV shifting time is less than five minutes compared to several hours full cycle for hydraulic system. The new system has capability to complete up to 27 zones per well with single cable. It gave more options and flexibility in order to selectively complete more zones compared to hydraulic FCVs which requires individual control line for each zone. Future behind casing opportunities (BCO) have been addressed upfront, saving millions of future investment on rig-less intervention. In addition to that, non-associated gas (NAG) zones have been completed to initiate in-situ gaslift as and when required avoiding the dependency on aging gaslift facility. The scope of the paper is to show case the well design evolution during Field D development and highlight on how smart completion has evolved from original dual completion to hydraulic smart and recently to electric smart system, how it has contributed to cost and production optimization during installation and production life and also support the gradual digitalization of the Field D. In the end it demonstrates the optimized completion design to enhance the overall economic life of the depleting field.


2021 ◽  
Author(s):  
Mikhail Ivanovich Samoilov ◽  
Vladimir Nikolaevich Astafyev ◽  
Evgeny Faritovich Musin

Abstract The paper describes a system of approaches to the design and engineering support of multistage hydraulic fracturing: A method of developing multiple-option modular design of multistage hydraulic fracturing which is a tool for operational decision-making in the process of hydraulic fracturing.Building a Hydraulic Fracturing Designs Matrix when optimizing field development plans. The result was used to build decision maps for finding well completion methods and selecting a baseline hydraulic fracturing design. The paper also describes how the systematization of approaches, methodological developments, and decision templates can help in optimizing field development by drilling directional and horizontal wells followed by multi-stage hydraulic fracturing. The sequence of events and tasks that led to the development of the methodology, as well as its potential, is briefly described. The methodologies were developed during the execution of a hydraulic fracturing project at JK 29 reservoirs of the Tyumen Suite of Em-Yogovskoye field, after which they were applied in a number of other projects for the development of hard-to-recover hydrocarbon reserves in West Siberia.


Sign in / Sign up

Export Citation Format

Share Document