Multistage Hydraulic Fracturing of the Tyumen Suite Reservoirs of Em-Yogovskoye Field: Frac-Design, Practice, Results

2021 ◽  
Author(s):  
Mikhail Ivanovich Samoilov ◽  
Vladimir Nikolaevich Astafyev ◽  
Evgeny Faritovich Musin

Abstract The paper describes a system of approaches to the design and engineering support of multistage hydraulic fracturing: A method of developing multiple-option modular design of multistage hydraulic fracturing which is a tool for operational decision-making in the process of hydraulic fracturing.Building a Hydraulic Fracturing Designs Matrix when optimizing field development plans. The result was used to build decision maps for finding well completion methods and selecting a baseline hydraulic fracturing design. The paper also describes how the systematization of approaches, methodological developments, and decision templates can help in optimizing field development by drilling directional and horizontal wells followed by multi-stage hydraulic fracturing. The sequence of events and tasks that led to the development of the methodology, as well as its potential, is briefly described. The methodologies were developed during the execution of a hydraulic fracturing project at JK 29 reservoirs of the Tyumen Suite of Em-Yogovskoye field, after which they were applied in a number of other projects for the development of hard-to-recover hydrocarbon reserves in West Siberia.

2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2021 ◽  
Author(s):  
Vitaly Virt ◽  
Vladimir Kosolapov ◽  
Vener Nagimov ◽  
Andrey Salamatin ◽  
Yulia Fesina ◽  
...  

Abstract Profitable development of hard-to-recover reserves often involves drilling of horizontal wells with multistage hydraulic fracturing to increase the oil recovery factor. Usually to monitor the fracture sweep efficiency, pressure transient analysis is used. However, in case of several fractures this method delivers only average hydrodynamic parameters of the well-fracture system. This paper illustrates the value of temperature logging data and demonstrates possibilities of the 3-D thermo-mechanical modelling in evaluating the differential efficiency of multi-stage hydraulic fracturing.


2021 ◽  
Author(s):  
Nadir Husein ◽  
Vishwajit Upadhye ◽  
Igor Leonidovich Novikov ◽  
Albina Viktorovna Drobot ◽  
Viacheslav Valeryevich Bolshakov ◽  
...  

Abstract This paper deals with the case of using the production surveillance inflow tracer based method in one of multi-lateral wells located in the Yuzhno-Priobskoye field. Tracer systems were placed in the well during the well construction by horizontal side tracking, and multi-stage hydraulic fracturing (MSHF) was performed, with the parent borehole remaining in operation. This technology allows developing the reservoir drainage area with a lateral hole and bringing the oil reserves remaining in the parent borehole into production, which results in an increased well productivity and improved oil recovery rate. Tracer systems are placed into the parent borehole within a downhole sub installed into the well completion. Polymer-coated proppant packs were injected during multi-stage hydraulic fracturing to deliver the tracers to the side track lateral. Dynamic production profiling was done to aid into more efficient development of complex and heterogeneous reservoirs and improve of the productive reservoir sweep ratio during the construction of multilateral wells, which enabled us to address several key problems: Providing tools for waterflood diagnostics in multilateral wells and finding an easy water shutoff method for a certain interval Assessing the efficiency of multi-stage hydraulic fracturing and elaborating the optimal treatment design Selecting the optimal mode of the multilateral well operation to prevent premature flooding in one or more laterals Evaluating whether well construction was performed efficiently, and a higher production was achieved by side tracking. Currently, the proposed first-of-its-kind solution enables the operator to obtain a set of data that can help not only significantly improve the wells’ productivity and increase the oil recovery rate, but also lead to a considerable economic savings in capital expenditure.


2019 ◽  
Vol 16 (11) ◽  
pp. 4584-4588
Author(s):  
I. A. Pogrebnaya ◽  
S. V. Mikhailova

The work is devoted to identifying the most relevant geological and technical measures carried out in Severo-Ostrovnoe field from the period of its development to the present. Every year dozens of geotechnical jobs (GJ) are carried out at each oil field-works carried out at wells to regulate the development of fields and maintain target levels of oil production. Today, there are two production facilities in the development of the Severo-Ostrovnoe field: UV1a1 and BV5. With the help of geotechnical jobs, oil-producing enterprises ensure the fulfillment of project indicators of field development (Mikhailov, N.N., 1992. Residual Oil Saturation of Reservoirs Under Development. Moscow, Nedra. p.270; Good, N.S., 1970. Study of the Physical Properties of Porous Media. Moscow, Nedra. p.208). In total, during the development of the Severo-Ostrovnoe field, 76 measures were taken to intensify oil production and enhance oil recovery. 12 horizontal wells were drilled (HW with multistage fracking (MSF)), 46 hydraulic fracturing operations were performed, 12 hydraulic fracturing operations were performed at the time of withdrawal from drilling (HW with MSF), five sidetracks were cut; eight physic-chemical BHT at production wells; five optimization of well operation modes. The paper analyzes the performed geological and technical measures at the facilities: UV1a1∦BV5 of the Severo-Ostrovnoe field. Four types of geological and technical measures were investigated: hydraulic fracturing, drilling of sidetracks with hydraulic fracturing, drilling of horizontal wells with multi-stage hydraulic fracturing, and physic-chemical optimization of the bottom-hole formation zone. It was revealed that two geotechnical jobs, namely, formation hydraulic fracturing (FHF) and drilling of lateral shafts in the Severo-Ostrovnoe field are the most highly effective methods for intensifying reservoir development and increasing oil recovery. SXL was conducted at 5 wells. The average oil production rate is 26.6 tons per day, which is the best indicator. Before this event, the production rate of the well was 2.1 tons per day. Currently, the effect of ongoing activities continues.


2017 ◽  
pp. 89-92
Author(s):  
I. T. Shkryaba ◽  
S. F. Mulyavin ◽  
I. I. Kleshchenko ◽  
V. Yu. Kusakin

The analysis of efficiency at engaging into development of hard-to-recover reserves of oil of horizontal wells using multistage hydraulic fracturing has been conducted. The results are presented as a comparison of the dynamics of their work to directional wells, in which also hydraulic fracturing had been held.


2019 ◽  
Vol 5 (12) ◽  
pp. 236-241 ◽  
Author(s):  
K. Eremenko ◽  
D. Kazakovtseva ◽  
E. Gudoshnik ◽  
A. Orlov

The article discusses the features of the application of the multi-stage hydraulic fracturing process. The dangers and risks of this process are identified.


2021 ◽  
Author(s):  
Konstantin Yurievich Loskutov ◽  
Almaz Albertovich Sadretdinov ◽  
Michael Ivanovich Samoilov ◽  
Dmitriy Vasilevich Emelyanov ◽  
Yuri Aleksandrovich Delyanov ◽  
...  

Abstract Tyumenskaya and Vikulovskya stratas are the major development objects for Rosneft subsidiary – RN- Nyaganneftegaz, characterized by close location of target zones to other layers, breakthrough in which is not desirable. Thus, target zones of Tyumenskaya group of formations are located close to Abalakskaya strata, and Vikulovskaya group of formations is described by close location of the target hydraulic fracturing intervals to the water-saturated layers. Risks of multi-stage hydraulic fracturing are high due to the use of synthetic geological and geomechanical models and synthetic logging associated with different sections of horizontal wells. The article presents the implementation experience of specifically developed technological solution in order to increase profitability of development and production of hydrocarbons and decrease the risks of ineffective stimulation: use of low-viscosity viscoelastic hydraulic fracturing fluids based on synthetic polymer- polyacrylamide with inherited ability to control fracture height growth without a need in significant reduction of proppant volume. The work performed on development and introduction of novel low-viscosity fluids based on polyacrylamide on Vikulovskaya and Tyumenskaya formations - RN-Nyaganneftegaz development objects has become a new stage in the history of hydraulic fracturing of these formations, and as well as for other oilfields with similar geological structure and field development conditions. The gained experience formed a basis for the effective implementation of similar hydraulic fracturing fluid systems and increasing of well productivity following in the result of well stimulation.


2016 ◽  
Author(s):  
Ali Al-Ghaithi ◽  
Fahad Alawi ◽  
Ernest Sayapov ◽  
Ehab Ibrahim ◽  
Najet Aouchar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document