A Study of Polymer Solution Rheology, Flow Behavior, and Oil Displacement Processes

1971 ◽  
Author(s):  
Hossein H. Nouri ◽  
Paul J. Root
1981 ◽  
Vol 103 (4) ◽  
pp. 491-496 ◽  
Author(s):  
J. T. Kuo ◽  
L. S. G. Kovasznay

A novel flow configuration was explored for the study of the behavior of drag reducing polymers. A screw pump consisting of a smooth cylinder and a concentrically placed screw was used to create a strongly three-dimensional but essentially laminar flow. In the first phase of the study, the static pressure head developed by the screw pump was measured as a function of polymer concentration (polyox 10 to 100 ppm in water). A large increase of the developed head was observed that behaved in an analogous manner to drag reduction as far as concentration and straining of the polymer solution was concerned. In the second phase of the study, a new apparatus was constructed and the additional parameter of a superimposed through flow was included and the degree of failure of the superposition principle was established. Sensitivity of the phenomenon to chemicals like HCl, HNO3, and NaOH in the polymer solution was also studied. When the effect of these chemicals on the polymer solution flow behavior was presented in terms of the pH value of the polymer solution, it showed a similar trend to those observed in drag reduction.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1225 ◽  
Author(s):  
Xiankang Xin ◽  
Gaoming Yu ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Xiaohu Dong ◽  
...  

The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media. Then, a new mathematical model was proposed, and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed considering the non-Newtonian flow. The designed simulator was validated by comparing its results with those obtained from commercial software and typical polymer flooding experiments. The developed simulator was further applied to investigate the non-Newtonian flow in polymer flooding. The experimental results demonstrated that the flow behavior index of the polymer solution is 0.3655, showing a shear thinning; and heavy oil is a type of Bingham fluid that overcomes a threshold pressure gradient (TPG) to flow in porous media. Furthermore, the validation of the designed simulator was confirmed to possess high accuracy and reliability. According to its simulation results, the decreases of 1.66% and 2.49% in oil recovery are caused by the difference between 0.18 and 1 in the polymer solution flow behavior indexes of the pure polymer flooding (PPF) and typical polymer flooding (TPF), respectively. Moreover, for heavy oil, considering a TPG of 20 times greater than its original value, the oil recoveries of PPF and TPF are reduced by 0.01% and 5.77%, respectively. Furthermore, the combined effect of shear thinning and a threshold pressure gradient results in a greater decrease in oil recovery, with 1.74% and 8.35% for PPF and TPF, respectively. Thus, the non-Newtonian flow has a hugely adverse impact on the performance of polymer flooding in heavy oil reservoirs.


2018 ◽  
Vol 9 (1) ◽  
pp. 703-715 ◽  
Author(s):  
Leilei Tie ◽  
Meng Yu ◽  
Xiang Li ◽  
Wenhui Liu ◽  
Bo Zhang ◽  
...  

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Takatsune Narumi ◽  
Jun Fukada ◽  
Satoru Kiryu ◽  
Shinji Toga ◽  
Tomiichi Hasegawa

An experimental study has been conducted on unstable structures induced in two-dimensional slit flows of liquid crystalline polymer solution. 50wt% aqueous solution of hydroxyl-propylcellulose (HPC) was utilized as a test fluid and its flow behavior in L-shaped slit channels with a cross section of 1mm height and 16mm width was measured optically. The inner corner of the L-shaped channel was rounded off in order to clarify the influence of the radius of curvature on the unstable behavior. A conversing curved channel was also tested. The flow patterns of the HPC solution in the channels were visualized with two crossed polarizers and we observed that typical wavy textures generated in the upstream of the corner almost disappeared after the corner flow. However, an unstable texture was developed again only from the inner corner in downstream flow. The fluctuation of the orientation angle and dichroism were also measured with a laser opto-rheometric system and it was found that the unstable behaviors of the HPC solution have periodic oscillatory characteristics at a typical frequency. In the inner side flow after the corner, the periodic motion became larger toward the downstream and then higher harmonic oscillations were superimposed. Larger rounding off of the inner corner suppressed the redevelopment of unstable behavior, and it is considered that the rapid regrowth of unstable behavior was caused by rapid deceleration at the corner flow. Moreover, the unstable structure was stabilized with an accelerated (elongated) region in the corner flow and the converging channel was helpful to obtain a stable structure in the downstream region.


2011 ◽  
Author(s):  
Shuzhen Xin ◽  
Qingjie Zhang ◽  
Jianguang Wei ◽  
Ying Chen ◽  
Rongjiu Wang ◽  
...  

Author(s):  
A I Kadyirov ◽  
J V Karaeva ◽  
V O Zdor ◽  
E M Khusnutdinova

Sign in / Sign up

Export Citation Format

Share Document