Determination of Pressure-Transient and Productivity Data for Deviated Wells in Layered Reservoirs

Author(s):  
Leif Larsen
1999 ◽  
Vol 2 (01) ◽  
pp. 95-103 ◽  
Author(s):  
Leif Larsen

Summary Analytical methods are presented to determine pressure-transient and productivity data for deviated wells in layered reservoirs. The computational methods, which are based on Laplace transforms, can be used to generate types curves for use in direct analyses of pressure-transient data and to determine the effective skin of such wells for use in productivity computations. Introduction Deviated wells with full or limited flow entry are very common, especially in offshore developments. The pressure-transient behavior of fully penetrating deviated wells were investigated by Cinco et al.1 for homogeneous reservoirs. Reference 1 also contains a correlation for the pseudoradial skin factor for wells with deviation up to 75°, with modification indicated for anisotropic reservoirs. To investigate the behavior of deviated wells in layered reservoirs, the model from Ref. 1 can be used as a first approximation, modified to limited flow entry if necessary, but it has been difficult to use more exact models. It is possible, though, to generalize the methods used by Larsen2,3 for vertical wells to also cover deviated wells in layered reservoirs with and without crossflow. For reservoirs without crossflow away from the wellbore, i.e., commingled reservoirs, it is well known how Laplace transforms can be used to handle any model with known solution for individual layers. Deviated wells fall into this category. It is therefore enough to consider systems with crossflow. By including deviated wells with limited flow entry, horizontal wells will also be covered as a special subcategory. Analytical models of this type for horizontal wells have been considered by several authors, e.g., by Suzuki and Nanba4 and by Kuchuk and Habashy.5 Reference 4 is based on both numerical methods and analytical methods based on double transforms (Fourier and Laplace). Reference 5 is based on Green's function techniques. Mathematical Approach To accurately describe flow near deviated wells, and also to capture crossflow in layered reservoirs, three-dimensional flow equations are needed within each layer. If the horizontal permeability is independent of direction within each layer, flow within layer j can be described by the equation k j ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) p j + k j ′ ∂ 2 p j ∂ z 2 = μ ϕ j c t j ∂ p j ∂ t ( 1 ) under normal assumptions, where kj and kj′ denote horizontal and vertical permeability, and the other indexed variables have the standard meaning for each layer. Since an approach similar to that used in Refs. 2 and 3 will be followed, the vertical variation of pressure within each layer must be removed, at least temporarily. One way to accomplish this is to introduce the vertical average P j ( x , y , t ) = 1 h j ∫ z j − 1 z j p j ( x , y , z , t ) d z ( 2 ) of the pressure within layer j, where zj−1 and zj=zj−1+hj are the z coordinates of the lower and upper layer boundaries. There is one apparent problem with the approach above, it cannot handle the boundary condition at the wellbore directly. For each perforated layer, the well segment will therefore be replaced by a uniform flux fracture in the primary solution scheme, as illustrated in Fig. 1 for a fully perforated deviated well and in Fig. 2 for a partially perforated well with variable angle, with a transient skin effect used to correct from a fractured well solution to a deviated well solution. With well angle θj (as deviation from the vertical) and completed well length Lwj in layer j, the associated fracture half-length will be given by the identity x f j = 1 2 L w j s i n θ j ( 3 ) for each j. The completed well length Lwj is assumed to be a single fully perforated interval. The fracture half-length in layers with vertical well segments will be set equal to the wellbore radius rw. To capture deviated wells with more than one interval within a layer, the model can be subdivided by introducing additional layers. Although the well deviation is allowed to vary through the reservoir, the well azimuth will be assumed constant. The projection of the well in the horizontal plane can therefore be assumed to follow the x axis, and hence assume that y=0 along the well. Keeping the well path in a single plane is actually not necessary, but it simplifies the mathematical development and the computational complexity. If Eq. (1) is integrated from zj−1 to as shown in Eq. (2), then the flow equation k j h j ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) P j + k j ′ ∂ p j ∂ z | z j − k j ′ ∂ p j ∂ z | z j − 1 = μ ϕ j c t j h j ∂ P j ∂ t ( 4 ) is obtained, with the gradient terms representing flux through the upper and lower boundaries of layer j. In the standard multiple-permeability modeling of layered reservoirs, the gradient terms are replaced by difference terms in the form k j ′ ∂ p j ∂ z | z j = k j + 1 ′ ∂ p j + 1 ∂ z | z j = λ j ′ ( P j + 1 − P j ) ( 5 ) for each j, where λj′ is a constant determined from reservoir parameters or adjusted to fit the well response. For details on how to choose crossflow parameters, see Refs. 2 and 3 and additional references cited in those papers. Additional fracture to well drawdown is assumed not to affect this approach.


2007 ◽  
Author(s):  
Augusto Jose Garcia-Hernandez ◽  
Stefan Z. Miska ◽  
Mengjiao Yu ◽  
Nicholas E. Takach ◽  
Claudia Margaret Zettner
Keyword(s):  

2014 ◽  
Vol 1073-1076 ◽  
pp. 592-596
Author(s):  
Pei Luo ◽  
Yu Ming Luo ◽  
Kai Ma ◽  
Biao Zhang ◽  
Sha Sha Song

In the process of high sulfur gas field development, the sulfur will separate out from the mixed gas when the pressure near wellbore area drops to a critical pressure of H2S. This will reduce the reservoir porosity greatly and decrease the gas well productivity as well. This paper discusses the characteristics of pressure transient testing plots when sulfur deposition occurs based on the redial composite reservoir model. And introduce an approach to determine the sulfur deposition radius near the wellbore with pressure transient testing interpretation in high sulfur gas reservoir. The method has been applied in some high sulfur gas field in eastern Sichuan Basin. The result shows that the method is simple and practical.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
L.H.O. ULJOL ◽  
S. BIANCO ◽  
A.B.C. FILHO ◽  
M.S. BIANCO ◽  
L.B. CARVALHO

ABSTRACT: The objective of this work was to determine the interference periods of weeds of the bell pepper cultivar ‘Dahra’. Two experiments were conducted during the years 2014/15 (harvest with lower rainfall) and 2015/16 (harvest with higher rainfall). The treatments consisted of 11 growing periods of cohabitation and weed control with ‘Dahra’ bell peppers: 14, 28, 42, 56, 70, 84, 98, 112, 126, 140 and 154 days after transplanting (DAT). For the determination of the interference periods, the productivity data were analyze using the Boltzmann sigmoidal regression model. The main weeds were Eleusine indica, Brachiaria plantaginea, Digitaria nuda and Nicandra physaloides for presenting high biomass and relative density. The concomitance of these weeds caused losses of up to 85.22% (2014/15) and 86.2% (2015/16) in the fruit yield. It was found that, respectively, for the years 2014/15 and 2015/16, the period before the interference was 17 and 11 DAT, and the total interference prevention period of 71 and 89 DAT. Considering a tolerance of 5% in reducing bell pepper yield, it is recommended that weed control be performed from 11 to 89 DAT.


2011 ◽  
Vol 31 (5) ◽  
pp. 895-905 ◽  
Author(s):  
Grazieli Suszek ◽  
Eduardo G. de Souza ◽  
Miguel A. Uribe-Opazo ◽  
Lucia H. P. Nobrega

Through the site-specific management, the precision agriculture brings new techniques for the agricultural sector, as well as a larger detailing of the used methods and increase of the global efficiency of the system. The objective of this work was to analyze two techniques for definition of management zones using soybean yield maps, in a productive area handled with localized fertilization and other with conventional fertilization. The sampling area has 1.74 ha, with 128 plots with site-specific fertilization and 128 plots with conventional fertilization. The productivity data were normalized by two techniques (normalized and standardized equivalent productivity), being later classified in management zones. It can be concluded that the two methods of management zones definition had revealed to be efficient, presenting similarities in the data disposal. Due to the fact that the equivalent standardized productivity uses standard score, it contemplates a better statistics justification.


Sign in / Sign up

Export Citation Format

Share Document