Conversion of an Unprofitable Multireservoir Gas/Oil Field Into an Attractive Development Object

Author(s):  
S. Zakirov ◽  
A. Brusilovsky ◽  
E. Zakirov ◽  
I. Zakirov ◽  
V. Piskarev ◽  
...  
Keyword(s):  
Author(s):  
Qing Chen ◽  
◽  
Morten Kristensen ◽  
Yngve Bolstad Johansen ◽  
Vladislav Achourov ◽  
...  

Downhole fluid analysis (DFA) is one pillar of reservoir fluid geodynamics (RFG). DFA measurements provide both vertical and lateral fluid gradient data. These gradients, especially the asphaltene gradient derived from accurate optical density (OD) measurements, are critical in thermodynamic analysis to assess equilibration level and identify RFG processes. Recently, an RFG study was conducted using DFA and laboratory data from an oil field in the Norwegian North Sea. Fluid OD gradients show equilibrated asphaltenes in most of the reservoir, with a lateral variation of 20%. This indicates connectivity, which is confirmed by three years of production data. Two outliers are off the asphaltene equilibrium curve implying isolated sections, one each on the extreme east and west flank. Their asphaltene fraction varies by a factor of six. Such a difference reveals that different charge fluids entered the reservoir, and the equilibrated asphaltenes are the result of an after-charge mixing process. Meanwhile, different gas-oil contacts (GOCs) exist in the reservoir, indicating a lateral solution-gas gradient. Geochemistry analysis shows the same level of mild biodegradation in all the fluid samples, including those from two isolated sections. This means that biodegraded oil spills into the whole reservoir with little or no in-reservoir biodegradation. Furthermore, lateral asphaltene gradients at different times after charge have been preserved; it was a factor of six in asphaltenes content initially and is now 20% in the present day. This unique data set provides a valuable constraint to simulate reservoir fluid after-charge mixing processes to present day, aiming to investigate the factors impacting the evolution of lateral composition gradients in geologic time in a connected reservoir. Numerical simulations were performed over geologic time in reservoirs filled by oil with a lateral density gradient, which imitates the lateral compositional gradients in the gas-oil ratio (GOR) and asphaltenes measured in the above oil field. Simulations show that this lateral gradient creates lateral differential pressures and causes a countercurrent fluid flow forming a convection cell. In reservoirs with realistic vertical-to-horizontal aspect ratios, such fluid flows are not rapid, and lateral gradients can be partially retained in moderate geologic times. Additionally, diffusion was included in the simulation. The reservoir model was initialized with two GOCs producing subtle lateral GOR and density gradients. The simulated mixing process transports gas from higher GOR regions to lower GOR regions and reduces the GOC difference. However, the flux of solution gas transport is small. Consequently, we conclude that lateral GOR and asphaltene gradients can persist for moderate geologic time, which is consistent with observation from the field.


1999 ◽  
Vol 2 (05) ◽  
pp. 412-419 ◽  
Author(s):  
T.C. Billiter ◽  
A.K. Dandona

Summary The conventional way to produce an oil reservoir that has a gas cap is to produce only from the oil column while keeping the gas cap in place so that it can expand to provide pressure support. Depending upon the geometry, reservoir dip angle, and oil production rates, gas can either cone down to the oil producers or breakthrough as a front, leading to substantial increases in the gas-oil ratios of the oil producers. This paper presents a unique production methodology of simultaneously producing the gas cap and oil column while injecting water at the gas-oil contact to create a water barrier to separate the gas cap and oil column. This methodology has application in reservoirs with a low-dip angle, large gas cap, and a low residual gas saturation to water. It is demonstrated that the net present value of the project is improved if there is an immediate market for gas. Geostatistical reservoir models are used to demonstrate that the gas cap recovery is minimally impacted by heterogeneities. Introduction of the Concept The conventional way to produce an oil reservoir that has a gas cap is to produce the oil column while minimizing production from the gas cap. During the pressure depletion of the reservoir, the gas cap will expand to provide pressure or energy support. After the oil column is depleted, the gas cap is "blown down." In developing a production strategy for an oil reservoir with a large gas cap, a low-dip angle, and an available gas market, simultaneous waterflooding of the gas cap and oil column was evaluated. The water is injected at the gas-oil contact at rates high enough to overcome gravity effects and thus, the water displaces the gas up dip. In addition to providing pressure support, the created water wall separates the gas cap and the oil column regions. Since the development plan calls for the use of electrical submersible pumps (ESPs) in the oil producing wells, it is imperative to keep the gas production volumes from these oil wells at low levels so the ESPs will operate smoothly. As such, it is critical to control the downward migration of the gas cap. To maintain the reservoir pressure, water is injected not only at the gas-oil contact but also around the downdip periphery of the oil column to support the oil withdrawal rates. A simplistic representation of the simulated structure is shown in Fig. 1. This figure shows the location of the gas-oil contact, along with the location of the water injector at the gas-oil contact and of the gas cap producer. The reservoir considered in this study has a dip angle of 2°. For the purposes of illustration the dip angle has been exaggerated in Fig. 1. The horizontal distance between the injector and producer is 12,155 feet. The structural elevation difference between these two wells is 425 feet. Taking into account the density difference between the water and gas, the injected water must overcome a gravity component of 149 psi in addition to the energy required for the water to displace the gas. The possibility of injecting water at high enough rates to overcome both the gravity and displacement components is shown in this paper. The main objective of this paper is to present the concept of simultaneously producing the gas cap and oil column while injecting water at the gas-oil contact. The application of this concept for a newly discovered, offshore oil field has been studied. In this study, the majority of the effort was dedicated to theoretically proving this concept, as opposed to optimizing the number of wells and placement of wells to increase the recovery factors for oil and gas. This production methodology should be applicable to other reservoirs with similar characteristics. Partial Proof of Concept A literature survey indicated that the simultaneous production of the gas cap and oil column while injecting water at the gas-oil contact, has never been documented. However, four case histories were found in which water was injected at the gas-oil contact for the sole purpose of preventing the migration of the gas cap down structure. By preventing this migration, increased oil recoveries were realized. In these four cases, the gas cap was not produced during the depletion of the oil column. One successful application of this production methodology was to the Adena field in the Denver basin in 1965.1 By injecting water at the gas-oil contact, the operator was able to keep the producing gas-oil ratio value close to the solution gas-oil ratio value for an extended time. The ultimate oil recovery was estimated to be 47% of the original oil in place. The methodology of injecting water at the gas-oil contact was also applied in seven of the oil reservoirs of the Algyo Field in Hungary.2 These seven reservoirs are thin oil edge zones with large gas caps. The operators of this field were able to increase oil recovery by over 10% of original oil in place by using this methodology. In the Canadian oil field Kaybob South, the injection of water at the gas-oil contact was studied by Deboni and Field.3 They used numerical simulation to determine that a waterflood can be successfully implemented adjacent to a gas cap if a proper water "fence" is established between the gas cap and oil column. The authors concluded that an additional 10% of the oil in place can be recovered.


2015 ◽  
Author(s):  
A. V. Podnebesnykh ◽  
A. V. Baryshnikov ◽  
A. P. Kuvaldin ◽  
S. P. Stukov ◽  
A. S. Enilin ◽  
...  
Keyword(s):  
Gas Oil ◽  

2020 ◽  
Vol 12 (2) ◽  
pp. 193-199
Author(s):  
Thi Thu Huyen NGUYEN ◽  
Thi Kim Thoa TRAN ◽  
Thuy Hien LAI

Some of anaerobic, mesophilic sulfate-reducing bacteria that produce H2S and cause microbial metal corrosion can degrade crude oil in anaerobic conditions. In this study, a mesophilic sulfate-reducing bacterial strain D107G3 isolated from Bach Ho gas-oil field in Vung Tau, Vietnam that is able to utilize crude oil in the anaerobic condition is reported. The strain D107G3 was classified as a Gram-negative bacterium by using Gram staining method. Basing on scanning microscopy observation, the cell of a strain D107G3 had a curved rod shape. The 16S rRNA gene sequence analysis showed that the strain D107G3 was identified as Desulfovibrio vulgaris with 99.7% identity. The suitable conditions for its growth that was determined via estimating its H2S production was the modified Postgate B medium containing 1% (v/v) crude oil, 1% NaCl (w/v), pH 7 and 30°C incubation. In these conditions, the strain D107G3 can consume 11.4 % of crude oil total and oxidize heavy crude oil (≥ C45) for one month at anoxic condition. These obtained results not only contribute to the science but also continue to warn about the dangers of mesophilic sulfate reducing bacteria to the process of crude oil exploitation, use, and storage in Vung Tau, Vietnam. Trong bài báo này, chủng vi khuẩn khử sunphat (KSF) ưa ấm D107G3 phân lập từ giếng khoan dầu khí mỏ Bạch Hổ, Vũng Tàu, Việt Nam có khả năng sử dụng dầu thô trong điều kiện kị khí được công bố. Chủng D107G3 được xác định là vi khuẩn Gram âm nhờ phương pháp nhuộm Gram. Quan sát trên kính hiển vi điện tử quét cho thấy tế bào chủng D107G3 có hình que cong. Kết quả phân tích trình tự gen 16S rRNA đã xác định được chủng D107G3 thuộc loài Desulfovibrio vulgaris với độ tương đồng 99.7%. Thông qua đánh giá lượng H2S tạo thành đã khám phá được điều kiện thích hợp cho sinh trưởng của chủng D107G3: môi trường Postgate B cải tiến chứa 1% (v/v) dầu thô, 1 % NaCl (gL-1), pH 7 và nuôi cấy ở 30°C. Trong điều kiện đó, chủng D107G3 đã sử dụng được 11.4 % hàm lượng dầu tổng số, thành phần dầu bị phân huỷ là các n-parafin có mạch C≥45 sau 1 tháng nuôi cấy kỵ khí. Các kết quả này đóng góp về mặt khoa học và tiếp tục cảnh báo mối nguy hại của KSF ưa ấm đến việc khai thác, sử dụng và bảo quản dầu mỏ ở Vũng Tàu, Việt Nam.


1991 ◽  
Vol 31 (1) ◽  
pp. 22
Author(s):  
A.N. Bint

Exploration of the Dampier Sub-basin on the North West Shelf of Australia commenced with a reconnaissance seismic survey in 1965. In 1969 Madeleine-1, the first well drilled on the Madeleine Trend, encountered water bearing Upper Jurassic sandstones. Following acquisition of a regional grid of modern seismic in 1985 and 1986, and comprehensive hydrocarbon habitat studies, the Wanaea and Cossack prospects were matured updip from Madeleine 1. They were proposed to have improved reservoir development and an oil charge.The Wanaea Oil Field was discovered in 1989 when Wanaea-1 encountered a gross oil column of 103 m in the Upper Jurassic Angel Formation. The well flowed 49° API oil at 5856 BPD (931 kL/d) with a gas-oil ratio of 1036 SCF/STB. Two appraisal wells were drilled in the field in 1990.The Cossack Oil Field was discovered in 1990 when Cossack-1 encountered a gross oil column of 54 m also in the Angel Formation. The oil-water contact is 18 m deeper than in Wanaea-1. Cossack-1 flowed 49° API oil at 7200 BPD (1145 kL/d) with a gas-oil ratio of 98 SCF/STB.The Angel Formation reservoir consists of mass flow sandstones interbedded with bioturbated siltstones. Sandstone porosities average 16 to 17 per cent for both the Wanaea and Cossack Fields. Permeabilities average about 300 mD at Wanaea and about 500 mD at Cossack.An extensive 3-D seismic survey was conducted over the Wanaea and Cossack Fields in 1990. Final reserves calculations await interpretation of this survey, but it is clear that the combined Wanaea and Cossack oil reserve is the largest outside Bass Strait.


2015 ◽  
Author(s):  
A. V. Podnebesnykh ◽  
A. V. Baryshnikov ◽  
A. P. Kuvaldin ◽  
S. P. Stukov ◽  
A. S. Enilin ◽  
...  
Keyword(s):  
Gas Oil ◽  

Sign in / Sign up

Export Citation Format

Share Document