Production Performance Simulation of a Horizontal Well in the Bolivar Coastal Fields, Zulia State, Venezuela

1999 ◽  
Author(s):  
Carlos A. Perez ◽  
Victor M. Salazar ◽  
Elias Lopez ◽  
Chedid Rachid
2021 ◽  
Vol 10 ◽  
pp. 17-32
Author(s):  
Guido Fava ◽  
Việt Anh Đinh

The most advanced technique to evaluate different solutions proposed for a field development plan consists of building a numerical model to simulate the production performance of each alternative. Fields covering hundreds of square kilometres frequently require a large number of wells. There are studies and software concerning optimal planning of vertical wells for the development of a field. However, only few studies cover planning of a large number of horizontal wells seeking full population on a regular pattern. One of the criteria for horizontal well planning is selecting the well positions that have the best reservoir properties and certain standoffs from oil/water contact. The wells are then ranked according to their performances. Other criteria include the geometry and spacing of the wells. Placing hundreds of well individually according to these criteria is highly time consuming and can become impossible under time restraints. A method for planning a large number of horizontal wells in a regular pattern in a simulation model significantly reduces the time required for a reservoir production forecast using simulation software. The proposed method is implemented by a computer script and takes into account not only the aforementioned criteria, but also new well requirements concerning existing wells, development area boundaries, and reservoir geological structure features. Some of the conclusions drawn from a study on this method are (1) the new method saves a significant amount of working hours and avoids human errors, especially when many development scenarios need to be considered; (2) a large reservoir with hundreds of wells may have infinite possible solutions, and this approach has the aim of giving the most significant one; and (3) a horizontal well planning module would be a useful tool for commercial simulation software to ease engineers' tasks.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.


1990 ◽  
Author(s):  
Raj K. Prasad ◽  
Larry E. Coble

2018 ◽  
Vol 03 (01) ◽  
pp. 57-67
Author(s):  
Kevin C. Igwilo ◽  
Emeka Emmanuel Okoro ◽  
Anthony Afam Nwude ◽  
Angela Onose Mamudu ◽  
Charles Y. Onuh

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1474
Author(s):  
Yuchao Zeng ◽  
Fangdi Sun ◽  
Haizhen Zhai

The energy efficiency of the enhanced geothermal system (EGS) measures the economic value of the heat production and electricity generation, and it is a key indicator of system production performance. Presently there is no systematic study on the influence of well layout on the system energy efficiency. In this work we numerically analyzed the main factors affecting the energy efficiency of EGS using the TOUGH2-EOS1 codes at Gonghe Basin geothermal field, Qinghai province. The results show that for the reservoirs of the same size, the electric power of the three horizontal well system is higher than that of the five vertical well system, and the electric power of the five vertical well system is higher than that of the three vertical well system. The energy efficiency of the three horizontal well system is higher than that of the five vertical well system and the three vertical well system. The reservoir impedance of the three horizontal well system is lower than that of the three vertical well system, and the reservoir impedance of the three vertical well system is lower than that of the five vertical system. The sensitivity analysis shows that well spacing has an obvious impact on the electricity production performance; decreasing well spacing will reduce the electric power, reduce the energy efficiency and only have very slight influence on the reservoir impedance. Fracture spacing has an obvious impact on the electricity production performance; increasing fracture spacing will reduce the electric power and reduce the energy efficiency. Fracture permeability has an obvious impact on the electricity production performance; increasing fracture permeability will improve the energy efficiency and reduce the reservoir impedance.


2017 ◽  
Vol 35 (2) ◽  
pp. 194-217 ◽  
Author(s):  
Zhang Wei ◽  
Jiang Ruizhong ◽  
Xu Jianchun ◽  
Gao Yihua ◽  
Yang Yibo

In this paper, the mathematical model of production performance analysis for horizontal wells in composite coal bed methane reservoir is introduced. In this model, two regions with different formation parameters are distinguished, and multiple mechanisms are considered including desorption, diffusion, and viscous flow. Then the solution of horizontal well performance analysis model is obtained by using point source function method, Laplace transform, and Stehfest algorithm comprehensively. The solution of the proposed model is verified with previous work thoroughly. The pressure transient analysis for horizontal well when producing at a constant rate is obtained and discussed. At last, different flow regimes are divided based on pressure transient analysis curves. They are early wellbore storage period, skin factor period, first radial flow regime, transition regime, second radial flow regime, transfer regime, and late pseudo-radial flow regime. The effects of related parameters such as storativity ratio, transfer coefficient, adsorption coefficient, ratio of vertical permeability to horizontal permeability, skin factor, horizontal well position in vertical direction, and inner region radius are analyzed as well according to pressure transient analysis and rate transient analysis curves. The presented work in this paper can give a better understanding of coal bed methane production performance in composite reservoir.


Sign in / Sign up

Export Citation Format

Share Document